Advertisement

Journal of Scientific Computing

, Volume 44, Issue 1, pp 38–68 | Cite as

Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations

  • S. M. WiseEmail author
Article

Abstract

We present an unconditionally energy stable and solvable finite difference scheme for the Cahn-Hilliard-Hele-Shaw (CHHS) equations, which arise in models for spinodal decomposition of a binary fluid in a Hele-Shaw cell, tumor growth and cell sorting, and two phase flows in porous media. We show that the CHHS system is a specialized conserved gradient-flow with respect to the usual Cahn-Hilliard (CH) energy, and thus techniques for bistable gradient equations are applicable. In particular, the scheme is based on a convex splitting of the discrete CH energy and is semi-implicit. The equations at the implicit time level are nonlinear, but we prove that they represent the gradient of a strictly convex functional and are therefore uniquely solvable, regardless of time step-size. Owing to energy stability, we show that the scheme is stable in the \(L_{s}^{\infty}(0,T;H_{h}^{1})\) norm, and, assuming two spatial dimensions, we show in an appendix that the scheme is also stable in the \(L_{s}^{2}(0,T;H_{h}^{2})\) norm. We demonstrate an efficient, practical nonlinear multigrid method for solving the equations. In particular, we provide evidence that the solver has nearly optimal complexity. We also include a convergence test that suggests that the global error is of first order in time and of second order in space.

Keywords

Cahn-Hilliard equation Hele-Shaw flow Darcy’s law Finite difference methods Convex splitting Energy stability Nonlinear partial differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bramble, J.: A second order finite difference analog of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. AI, 27–34 (1949) Google Scholar
  4. 4.
    Cahn, J.: On spinodal decomposition. Acta Metall. 9, 795 (1961) CrossRefGoogle Scholar
  5. 5.
    Cahn, J., Hilliard, J.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258 (1958) CrossRefGoogle Scholar
  6. 6.
    Elliot, C., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998) Google Scholar
  8. 8.
    Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feng, X., Wise, S.: Analysis of a Fully Discrete Finite Element Approximation of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow (in preparation) Google Scholar
  10. 10.
    Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87, 675–699 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equation. J. Comput. Phys. 212, 288–304 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier Stokes fluids in 2d. SIAM J. Sci. Comput. 29, 2241–2257 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lee, H., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14, 514–545 (2002) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lowengrub, J., Truskinovsky, L.: Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shinozaki, A., Oono, Y.: Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, R2161–R2164 (1992) CrossRefGoogle Scholar
  20. 20.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, New York (2005) Google Scholar
  21. 21.
    Vollmayr-Lee, B., Rutenberg, A.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 066,703 (2003) CrossRefGoogle Scholar
  22. 22.
    Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Cont. Dyn. Sys. A 28, 405–423 (2010) CrossRefGoogle Scholar
  23. 23.
    Wang, C., Wise, S.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. (in review) Google Scholar
  24. 24.
    Wise, S., Lowengrub, J., Cristini, V.: An adaptive algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. (in review) Google Scholar
  25. 25.
    Wise, S., Lowengrub, J., Frieboes, H., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth–I model and numerical method. J. Theor. Biol. 253, 524–543 (2008) CrossRefGoogle Scholar
  26. 26.
    Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zheng, X., Wise, S., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics DepartmentThe University of TennesseeKnoxvilleUSA

Personalised recommendations