Journal of Scientific Computing

, Volume 43, Issue 2, pp 261–290 | Cite as

Adaptive Multiresolution Methods for the Simulation of Waves in Excitable Media

  • Raimund Bürger
  • Ricardo Ruiz-Baier
  • Kai Schneider
Article

Abstract

We present fully adaptive multiresolution methods for a class of spatially two-dimensional reaction-diffusion systems which describe excitable media and often give rise to the formation of spiral waves. A novel model ingredient is a strongly degenerate diffusion term that controls the degree of spatial coherence and serves as a mechanism for obtaining sharper wave fronts. The multiresolution method is formulated on the basis of two alternative reference schemes, namely a classical finite volume method, and Barkley’s approach (Barkley in Phys. D 49:61–70, 1991), which consists in separating the computation of the nonlinear reaction terms from that of the piecewise linear diffusion. The proposed methods are enhanced with local time stepping to attain local adaptivity both in space and time. The computational efficiency and the numerical precision of our methods are assessed. Results illustrate that the fully adaptive methods provide stable approximations and substantial savings in memory storage and CPU time while preserving the accuracy of the discretizations on the corresponding finest uniform grid.

Keywords

Spiral waves Adaptive multiresolution scheme Finite volume approximation FitzHugh-Nagumo model Barkley model Aliev-Panfilov model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7, 293–301 (1996) CrossRefGoogle Scholar
  2. 2.
    Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991) CrossRefGoogle Scholar
  3. 3.
    Barkley, D.: Spatial meandering. In: Kapral, R., Showalter, D. (eds.) Chemical Waves and Patterns, pp. 163–190. Kluwer, Dordrecht (1995) Google Scholar
  4. 4.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. (2010, to appear) Google Scholar
  5. 5.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems. Appl. Numer. Math. 59, 1668–1692 (2009) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bendahmane, M., Bürger, R., Ruiz-Baier, R., Urbano, J.M.: On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding. Math. Methods Appl. Sci. 32, 1704–1737 (2009) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18, 315–354 (1997) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bürger, R., Ruiz-Baier, R., Schneider, K., Sepúlveda, M.: Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension. M2AN Math. Model. Numer. Anal. 42, 535–563 (2008) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, X., Gao, C.: Well-posedness of a free boundary problem in the limit of slow-diffusion fast-reaction systems. J. Partial Differ. Equ. 19, 48–79 (2006) MATHMathSciNetGoogle Scholar
  11. 11.
    Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23, 805–823 (2001) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chiavassa, G., Donat, R., Müller, S.: Multiresolution-based adaptive schemes for hyperbolic conservation laws. In: Plewa, T., Linde, T., Weirs, V.G. (eds.) Adaptive Mesh Refinement—Theory and Applications, pp. 137–159. Springer, Berlin (2003) Google Scholar
  13. 13.
    Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003) MATHGoogle Scholar
  14. 14.
    Cohen, A., Kaber, S., Postel, M.: Multiresolution analysis on triangles: application to conservation laws. In: Vielsmeier, R., Benkhaldoun, F., Hanel, D. (eds.) Finite Volumes for Complex Applications II. Hermès, Paris (1999) Google Scholar
  15. 15.
    Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88, 399–443 (2001) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Domingues, M., Gomes, S., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time–stepping for evolutionary PDEs. J. Comput. Phys. 227, 3758–3780 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dowle, M., Mantel, R.M., Barkley, D.: Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurc. Chaos 7, 2529–2545 (1997) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000) Google Scholar
  19. 19.
    Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92, 41–82 (2002) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Fenton, F., Karma, A.: Vortex dynamics in 3D continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998) MATHCrossRefGoogle Scholar
  21. 21.
    Giga, Y., Goto, S., Ishii, H.: Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal. 23, 821–835 (1992) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Goldstein, R.E.: Traveling-wave chemotaxis. Phys. Rev. Lett. 77, 775–778 (1996) CrossRefGoogle Scholar
  23. 23.
    Goryachev, A., Kapral, R.: Spiral waves in chaotic systems. Phys. Rev. Lett. 76, 1619–1622 (1996) CrossRefGoogle Scholar
  24. 24.
    Goryachev, A., Kapral, R.: Spiral waves in media with complex-excitable dynamics. Int. J. Bifurc. Chaos 11, 2243–2247 (1999) Google Scholar
  25. 25.
    Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 34, 515–523 (1978) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995) MATHMathSciNetGoogle Scholar
  27. 27.
    Heineken, W., Warnecke, G.: Partitioning methods for reaction-diffusion problems. Appl. Numer. Math. 56, 981–1000 (2006) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Herrero, M.A., Sastre, L.: Models of aggregation in Dictyostelium discoideum: on the track of spiral waves. Netw. Heterog. Media 1, 241–258 (2006) MATHMathSciNetGoogle Scholar
  29. 29.
    Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictyostelium aggregation. Physica D 85, 425–444 (1995) MATHCrossRefGoogle Scholar
  30. 30.
    Holden, H., Karlsen, K.H., Risebro, N.H.: On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations. Electron. J. Differ. Equ. 2003, 1–31 (2003) MathSciNetGoogle Scholar
  31. 31.
    Hoyle, R.: Pattern Formation. Cambridge University Press, Cambridge (2006) MATHCrossRefGoogle Scholar
  32. 32.
    Hu, G., Xiao, J., Chua, L.O., Piska, L.: Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80, 1998 (1884–1887) Google Scholar
  33. 33.
    Jomaas, G., Bechtold, J.K., Lawa, C.K.: Spiral waves in expanding hydrogen-air flames: Experiment and theory. Proc. Combust. Inst. 31, 1039–1046 (2007) CrossRefGoogle Scholar
  34. 34.
    Karlsen, K.H., Risebro, N.H.: Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. M2AN Math. Model. Numer. Anal. 35, 239–269 (2001) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Keener, J.: Arrhythmias by dimension. In: Proc. Symp. Appl. Math. vol. 59, pp. 57–81. Am. Math. Soc., Providence (2002) Google Scholar
  36. 36.
    Keener, J., Sneyd, J.: Mathematical Physiology. I: Cellular Physiology, 2nd edn. Springer, New York (2009) MATHGoogle Scholar
  37. 37.
    Keener, J., Sneyd, J.: Mathematical Physiology. II: Systems Physiology, 2nd edn. Springer, New York (2009) MATHGoogle Scholar
  38. 38.
    Lee, K.J., Goldstein, R.E., Cox, E.C.: cAMP waves in Dictyostelium territories. Nonlinearity 15, C1–C5 (2002) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Margerit, D., Barkley, D.: Cookbook asymptotics for spiral and scroll waves in excitable media. Chaos 12, 636–649 (2002) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Mascia, C., Porretta, A., Terracina, A.: Non-homogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163, 87–124 (2002) MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Michel, A., Vovelle, J.: Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41, 2262–2293 (2003) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Mikhailov, A.S., Showalter, K.: Control of waves patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006) CrossRefMathSciNetGoogle Scholar
  43. 43.
    Mitchell, A.: On the crest of a spiral wave. Nature 389, 547 (1997) CrossRefGoogle Scholar
  44. 44.
    Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003) MATHGoogle Scholar
  45. 45.
    Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30, 493–531 (2007) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Murray, J.D.: Mathematical Biology. II: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003) Google Scholar
  47. 47.
    Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the FitzHugh-Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009) MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Panfilov, V., Bayliss, A., Matkowsky, B.J.: Spiral flames. Appl. Math. Lett. 16, 131–135 (2003) MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Pérez-Muñuzuri, A., Pérez-Muñuzuri, V., Pérez-Villar, V., Chua, L.O.: Spiral waves on a 2-D array of nonlinear circuits. IEEE Trans. Circuits Syst. 40, 872–877 (1993) MATHCrossRefGoogle Scholar
  50. 50.
    Ramos, J.I.: Spiral wave break-up and planar front formation in two-dimensional reactive-diffusive media with straining. Appl. Math. Comput. 154, 697–711 (2004) MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003) MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Shajahan, T.K., Sinha, S., Pandit, R.: Spiral-wave dynamics depends sensitively on inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E 75, 011929 (2007) CrossRefMathSciNetGoogle Scholar
  53. 53.
    Shardlow, T.: Numerical simulation of stochastic PDEs for excitable media. J. Comput. Appl. Math. 175, 429–446 (2005) MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Scheel, A.: Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. 29, 1399–1418 (1998) MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985) MATHGoogle Scholar
  56. 56.
    Tomchik, K.J., Devreotes, P.N.: Adenosine 3′,5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212, 443–446 (1981) CrossRefGoogle Scholar
  57. 57.
    Tung, L.: Electroporation of cardiac cells. In: Nickoloff, J.A. (ed.) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol. 48, pp. 253–271 (1995) Google Scholar
  58. 58.
    Tyson, J.J., Murray, J.D.: Cyclic AMP waves during aggregation of Dictyostelium amoebae. Development 106, 421–426 (1989) Google Scholar
  59. 59.
    Rauch, J.: Global existence for the FitzHugh-Nagumo equations. Commun. Partial Differ. Equ. 1, 609–621 (1976) CrossRefMathSciNetGoogle Scholar
  60. 60.
    van Oss, C., Panfilov, A.V., Hogeweg, P., Siegert, F., Weijer, C.J.: Spatial pattern formation during aggregation of the slime mold Dictyostelium discoideum. J. Theor. Biol. 181, 203–213 (1996) CrossRefGoogle Scholar
  61. 61.
    Vanag, V.K., Epstein, I.R.: Segmented spiral waves in a reaction-diffusion system. Proc. Natl. Acad. Sci. 100, 14635–14638 (2003) CrossRefGoogle Scholar
  62. 62.
    Weiser, M.: Pointwise nonlinear scaling for reaction-diffusion equations. Appl. Numer. Math. 59, 2009 (1858–1869) MathSciNetGoogle Scholar
  63. 63.
    Winfree, A.T.: The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984) CrossRefGoogle Scholar
  64. 64.
    Witelski, T.P.: Segregation and mixing in degenerate diffusion in population dynamics. J. Math. Biol. 35, 695–712 (1997) MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Xu, W., Hu, D., Lei, A., Li, Q.S.: Single spiral wave induced by noise. Appl. Math. Comput. 171, 703–709 (2005) MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970) CrossRefGoogle Scholar
  67. 67.
    Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 1, 379–386 (1991) CrossRefGoogle Scholar
  68. 68.
    Zhang, H., Hu, B., Hu, G.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raimund Bürger
    • 1
  • Ricardo Ruiz-Baier
    • 2
  • Kai Schneider
    • 3
  1. 1.CI²MA and Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile
  2. 2.Modelling and Scientific Computing, CMCS-MATHICSE-SBÉcole Polytechnique Fédérale de Lausanne, EPFLLausanneSwitzerland
  3. 3.Centre de Mathématiques et d’InformatiqueUniversité de ProvenceMarseille cedex 13France

Personalised recommendations