Journal of Scientific Computing

, Volume 45, Issue 1–3, pp 294–332 | Cite as

Analysis of Nonlinear Spectral Eddy-Viscosity Models of Turbulence

  • Max Gunzburger
  • Eunjung Lee
  • Yuki Saka
  • Catalin Trenchea
  • Xiaoming Wang
Article

Abstract

Fluid turbulence is commonly modeled by the Navier-Stokes equations with a large Reynolds number. However, direct numerical simulations are not possible in practice, so that turbulence modeling is introduced. We study artificial spectral viscosity models that render the simulation of turbulence tractable. We show that the models are well posed and have solutions that converge, in certain parameter limits, to solutions of the Navier-Stokes equations. We also show, using the mathematical analyses, how effective choices for the parameters appearing in the models can be made. Finally, we consider temporal discretizations of the models and investigate their stability.

Navier-Stokes equations Turbulence Eddy-viscosity models Spectral methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. A Series of Comprehensive Studies in Mathematics, vol. 223. Springer, Berlin (1976) MATHGoogle Scholar
  2. 2.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988) MATHGoogle Scholar
  4. 4.
    Chen, G.-Q., Du, Q., Tadmor, E.: Spectral viscosity approximations to multidimensional scalar conservation laws. Math. Comput. 61(204), 629–643 (1993) MATHMathSciNetGoogle Scholar
  5. 5.
    DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993) MATHGoogle Scholar
  6. 6.
    Diening, L., Prohl, A., Ružička, M.: Semi-implicit Euler scheme for generalized Newtonian fluids. SIAM J. Numer. Anal. 44(3), 1172–1190 (2006) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998) MATHGoogle Scholar
  8. 8.
    Fefferman, C.: The multiplier problem for the ball. Ann. Math. (2) 94, 330–336 (1971) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Guermond, J., Prudhomme, S.: Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulence flows. M2AN Math. Model. Numer. Anal. 37(6), 893–908 (2003) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jansen, K., Tejada-Martinez, A.: An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis. In: AIAA Annual Meeting and Exhibit, Paper No. 2002-0283 (2002) Google Scholar
  11. 11.
    Karamanos, G., Karniadakis, G.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163, 22–50 (2000) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kraichnan, R.: Eddy-viscosity concept in spectral space. J. Atmos. Sci. 33, 1521–1536 (1976) CrossRefGoogle Scholar
  13. 13.
    Krantz, S.: A Panorama of Harmonic Analysis. Carus Mathematical Monographs, vol. 27. Math. Assoc. Am., Washington (1999) MATHGoogle Scholar
  14. 14.
    Ladyzhenskaya, O.: Modifications of the Navier-Stokes equations for large velocity gradients. Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory. Consultants Bureau, New York (1970) Google Scholar
  15. 15.
    Layton, W.: A mathematical introduction to large eddy simulation. Technical report, University of Pittsburgh, TR-MATH 03-03 (2003) Google Scholar
  16. 16.
    Leray, J.: Essay sur les mouvements plans d’une liquide visqueux que limitent des parois. J. Math. Pur. Appl., Paris Ser. IX(13), 331–418 (1934) Google Scholar
  17. 17.
    Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. Am. Math. Soc., Providence (2001) MATHGoogle Scholar
  18. 18.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Dunod, Paris (1968) Google Scholar
  19. 19.
    Machihara, S., Ozawa, T.: Interpolation inequalities in Besov spaces. Proc. Am. Math. Soc. 131(5), 1553–1556 (2003) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Malek, J., Necas, J., Rokyta, M., Ruzicka, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996) MATHGoogle Scholar
  21. 21.
    Prodi, G.: Un teorema di unicitá per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48(4), 173–182 (1959) MATHMathSciNetGoogle Scholar
  22. 22.
    Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Nonlinear Problems Proc. Sympos., Madison, Wis, pp. 69–98. University of Wisconsin Press, Madison (1963) Google Scholar
  23. 23.
    Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–152 (1963) CrossRefGoogle Scholar
  24. 24.
    Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006) Google Scholar
  25. 25.
    Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979) MATHGoogle Scholar
  26. 26.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1997) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Max Gunzburger
    • 1
  • Eunjung Lee
    • 2
  • Yuki Saka
    • 3
  • Catalin Trenchea
    • 4
  • Xiaoming Wang
    • 3
  1. 1.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulKorea
  3. 3.Department of MathematicsFlorida State UniversityTallahasseeUSA
  4. 4.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations