Journal of Scientific Computing

, Volume 42, Issue 2, pp 185–197 | Cite as

Image Recovery via Nonlocal Operators

  • Yifei LouEmail author
  • Xiaoqun Zhang
  • Stanley Osher
  • Andrea Bertozzi
Open Access


This paper considers two nonlocal regularizations for image recovery, which exploit the spatial interactions in images. We get superior results using preprocessed data as input for the weighted functionals. Applications discussed include image deconvolution and tomographic reconstruction. The numerical results show our method outperforms some previous ones.


Nonlocal methods Inverse problem Deconvolution Tomography Variational model 


  1. 1.
    Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977) Google Scholar
  2. 2.
    Avinash, C., Malcolm, S.: Principles of Computerized Tomographic Imaging. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001) Google Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: Image enhancement by non-local reverse heat equation. Technical Report 22, CMLA (2006) Google Scholar
  5. 5.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chan, T.F., Shen, J.: Mathematical models for local non-texture inpainting. J. Appl. Math. 62(3), 1019–1043 (2002) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998) CrossRefGoogle Scholar
  8. 8.
    Darbon, J., Osher, S.: Fast discrete optimization for sparse approximations and deconvolution. Technical report, UCLA (2007, to appear) Google Scholar
  9. 9.
    Donoho, D., Johnstone, J.: Ideal spatial adaption via wavelet shrinkage. Biometrika 81(3), 425–455 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parameteric sampling. In: ICCV, vol. 2, pp. 1033–1038 (1999) Google Scholar
  11. 11.
    Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2004) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 Google Scholar
  15. 15.
    He, L., Marquina, A., Osher, S.: Blind deconvolution using TV regularization and Bregman iteration. Int. J. Imaging Syst. Technol. 15(1), 74–83 (2005) CrossRefGoogle Scholar
  16. 16.
    Hummel, R.A., Kimia, B., Zucker, S.W.: Gaussian blur and the heat equation: forward and inverse solutions. In: IEEE Computer Vision and Pattern Recognition, vol. 2, pp. 416–421 (1983) Google Scholar
  17. 17.
    Hummel, R.A., Kimia, B., Zucker, S.W.: Deblurring Gaussian blur. In: Computer Vision, Graphics, and Image Processing, vol. 38, pp. 66–80 (1987) Google Scholar
  18. 18.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. In: Pattern Recognition, vol. 7, pp. 53–58 (1975) Google Scholar
  20. 20.
    Marquina, A.: Nonlinear inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: ECCV ’08: European Conference on Computer Vision, pp. 57–68. Springer, Berlin (2008) Google Scholar
  23. 23.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) zbMATHCrossRefGoogle Scholar
  24. 24.
    Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Wiley, New York (1977) Google Scholar
  25. 25.
    Yaroslavsky, L.P.: Digital Picture Processing, an Introduction. Springer, Berlin (1985) zbMATHGoogle Scholar
  26. 26.
    Zhou, D., Scholkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Stat. Relational Learning and Its Connections to Other Fields (2004) Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Yifei Lou
    • 1
    Email author
  • Xiaoqun Zhang
    • 1
  • Stanley Osher
    • 1
  • Andrea Bertozzi
    • 1
  1. 1.Mathematics DepartmentUCLALos AngelesUSA

Personalised recommendations