Journal of Scientific Computing

, Volume 41, Issue 1, pp 139–164 | Cite as

Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems

Article

Abstract

In this paper we consider the case of nonlinear convection-diffusion problems with a dominating convection term and we propose exponential integrators based on the composition of exact pure convection flows. These methods can be applied to the numerical integration of the considered PDEs in a semi-Lagrangian fashion. Semi-Lagrangian methods perform well on convection dominated problems (Pironneau in Numer. Math. 38:309–332, 1982; Hockney and Eastwood in Computer simulations using particles. McGraw-Hill, New York, 1981; Rees and Morton in SIAM J. Sci. Stat. Comput. 12(3):547–572, 1991; Baines in Moving finite elements. Monographs on numerical analysis. Clarendon Press, Oxford, 1994).

In these methods linear convective terms can be integrated exactly by first computing the characteristics corresponding to the gridpoints of the adopted discretization, and then producing the numerical approximation via an interpolation procedure.

Keywords

Additive Runge-Kutta methods Commutator-free methods Convection-diffusion equations Semi-Lagrangian methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baines, M.J.: Moving Finite Elements. Monographs on Numerical Analysis. Clarendon Press, Oxford (1994) MATHGoogle Scholar
  4. 4.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988) MATHGoogle Scholar
  5. 5.
    Crouch, P.E., Grossman, R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3, 1–33 (1993) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie group methods. FCGS 19, 341–352 (2003) Google Scholar
  7. 7.
    Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. 39, 19 (2004) Google Scholar
  8. 8.
    Celledoni, E., Kometa, B.K.: Order conditions for the semi-Lagrangian exponential integrators. Preprint numerics nr. 4, Department of Mathematical Sciences, NTNU, Trondheim, Norway (2009) Google Scholar
  9. 9.
    Celledoni, E., Moret, I.: A Krylov projection method for systems of ODEs. Appl. Numer. Math. 24, 365–378 (1997) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators for the cubic Schroedinger equation. J. FoCM 8(3), 303–317 (2008) MATHMathSciNetGoogle Scholar
  11. 11.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (1996) MATHGoogle Scholar
  12. 12.
    Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg-de Vries and Whitham equations. Commun. Pure Appl. Math. 60(11), 1623–1664 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190, 623–650 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hockney, R.W., Eastwood, J.W.: Computer Simulations Using Particles. McGraw-Hill, New York (1981) Google Scholar
  15. 15.
    Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moret, I., Novati, P.: RD-rational approximations of the matrix exponential BIT. Numer. Math. 44, 595–615 (2004) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A 39, 5585–5599 (2006) MATHMathSciNetGoogle Scholar
  18. 18.
    Pirroneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982) CrossRefGoogle Scholar
  19. 19.
    Pietra, P., Pohl, C.: Weak limits of the quantum hydrodynamic model. VLSI Des. 9, 427–434 (1999) CrossRefGoogle Scholar
  20. 20.
    Rees, M.D., Morton, K.W.: Moving point, particle and free Lagrange methods for convection-diffusion equations. SIAM J. Sci. Stat. Comput. 12(3), 547–572 (1991) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tritton, D.J.: Physical Fluid Dynamics. Van Nostrand Reinhold, London (1977) MATHGoogle Scholar
  22. 22.
    Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier-Stokes equation. J. Comput. Phys. 172, 658–684 (2001) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zheng, Z., Petzold, L.: Runge-Kutta-Chebyshev projection method. J. Comput. Phys. 219(2), 976–991 (2006) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institutt for Matematiske FagNTNUTrondheimNorway

Personalised recommendations