Journal of Scientific Computing

, Volume 43, Issue 3, pp 416–432

A Mass-Conservative Characteristic Finite Element Scheme for Convection-Diffusion Problems

Article

Abstract

We develop a mass-conservative characteristic finite element scheme for convection diffusion problems. This scheme preserves the mass balance identity. It is proved that the scheme is essentially unconditionally stable and convergent with first order in time increment and k-th order in element size when the Pk element is employed. Some numerical examples are presented to show the efficiency of the present scheme.

Keywords

Method of characteristics Mass-conservation Convection-diffusion Finite element Error estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32, 404–424 (1995) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. (Numer. Anal.) 15, 3–35 (1981) MATHMathSciNetGoogle Scholar
  3. 3.
    Boukir, K., Maday, Y., Metivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, New York (2002) Google Scholar
  6. 6.
    Douglas, J. Jr., Huang, T.C., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Douglas, J., Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ewing, R.E., Wang, H.: An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Glowinski, R.: Numerical Methods for Fluids (Part 3). Handbook of Numerical Analysis, vol. IX, Ciarlet, P.G., Lions, J.L. (eds.). Elsevier, Amsterdam (2003). Google Scholar
  10. 10.
    Ikeda, T.: Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena. Lecture Notes in Numerical and Applied Analysis, vol. 4. Kinokuniya/North-Holland, Tokyo (1983) MATHGoogle Scholar
  11. 11.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge Univ. Press, Cambridge (1987) MATHGoogle Scholar
  12. 12.
    Kanayama, H.: Discrete models for salinity distribution in a bay: Conservation laws and maximum principle. Theor. Appl. Mech. (Univ. Tokyo Press) 28, 559–579 (1980) Google Scholar
  13. 13.
    Pironneau, O.: On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pironneau, O.: Finite Element Methods for Fluids. Wiley, Chichester (1989) Google Scholar
  15. 15.
    Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection diffusion problems. Numer. Math. 92, 161–177 (2002) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximate of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tabata, M.: A finite element approximation corresponding to the upwind differencing. Memoirs Numer. Math. 4, 47–63 (1977) MATHMathSciNetGoogle Scholar
  18. 18.
    Tabata, M.: L -analysis of the finite element method. In: Fujita, H., Yamaguti, M. (eds.) Numerical Analysis of Evolution Equations. Lecture Notes in Numerical and Applied Analysis, vol. 1, pp. 25–62. Kinokuniya, Tokyo (1979) Google Scholar
  19. 19.
    Tabata, M., Fujima, S.: An upwind finite element scheme for high-Reynolds-number flows. Int. J. Numer. Methods Fluids 12, 305–322 (1991) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Viozat, C., Held, C., Mer, K., Dervieux, A.: On vertex-centered unstructured finite-volume methods for stretched anisotropic triangulations. Comput. Methods Appl. Mech. Eng. 190, 4733–4766 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wang, H., Dahle, H.K., Ewing, R.E., Espedal, M.S., Sharpley, R.C., Man, S.: An ELLAM scheme for advection-diffusion equations in two dimensions. SIAM J. Sci. Comput. 20, 2160–2194 (1999) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina
  2. 2.Faculty of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations