Advertisement

Journal of Scientific Computing

, Volume 39, Issue 2, pp 293–321 | Cite as

Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes

  • Jun Zhu
  • Jianxian Qiu
Article

Abstract

In [J. Comput. Phys. 193:115–135, 2004] and [Comput. Fluids 34:642–663, 2005], Qiu and Shu developed a class of high order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving nonlinear hyperbolic conservation law systems, and applied them as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes. The emphasis is again on the application of such HWENO finite volume methodology as limiters for RKDG methods to maintain compactness of RKDG methods. Numerical experiments for two dimensional Burgers’ equation and Euler equations of compressible gas dynamics are presented to show the effectiveness of these methods.

Keywords

Runge-Kutta discontinuous Galerkin method Limiters HWENO finite volume scheme High order accuracy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biswas, R., Devine, K.D., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169, 111–150 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, II: general framework. Math. Comput. 52, 411–435 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV: the multidimensional case. Math. Comput. 54, 545–581 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws, V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dougherty, R.L., Edelman, A.S., Hyman, J.M.: Nonnegativity-monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 52, 471–494 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Harten, A., Engquist, B., Osher, S., Chakravathy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Luo, H., Baum, J.D., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. (in press) Google Scholar
  18. 18.
    Nakamura, T., Tanaka, R., Yabe, T., Takizawa, K.: Exactly conservative semi-Lagrangian schemes for multi-dimensional hyperbolic equations with directional splitting technique. J. Comput. Phys. 174, 171–207 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Google Scholar
  24. 24.
    Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002) zbMATHCrossRefGoogle Scholar
  25. 25.
    Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987) zbMATHCrossRefGoogle Scholar
  26. 26.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Takewaki, H., Nishiguchi, A., Yabe, T.: Cubic interpolated pseudoparticle method (CIP) for solving hyperbolic type equations. J. Comput. Phys. 61, 261–268 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhu, J., Qiu, J., Shu, C.-W., Dumbser, M.: Runge-Kutta discontinuous Galerkin method using WENO limiters, II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityJiangsuChina
  2. 2.College of ScienceNanjing University of Aeronautics and AstronauticsJiangsuChina

Personalised recommendations