Journal of Scientific Computing

, Volume 40, Issue 1–3, pp 188–210 | Cite as

An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

  • Bernardo Cockburn
  • Guido Kanschat
  • Dominik SchötzauEmail author


We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element post-processing procedure is used to provide globally divergence-free velocity approximations. For small data, we prove the existence and uniqueness of discrete solutions and carry out an error analysis of the method. A series of numerical results are presented that validate our theoretical findings.


Discontinuous Galerkin methods Equal-order methods Incompressible Navier-Stokes equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brenner, S.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991) zbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cockburn, B., Kanschat, G., Schötzau, D.: Local discontinuous Galerkin methods for the Oseen equations. Math. Comput. 73, 569–593 (2004) zbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin methods for linear incompressible flow: A review. Comput. Fluids 34, 491–506 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005) zbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gopalakrishnan, J., Kanschat, G.: Application of unified DG analysis to preconditioning DG methods. In: Bathe, K.J. (ed.) Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 1943–1945. Cambridge, MA, USA. Elsevier, Amsterdam (2003) Google Scholar
  11. 11.
    Kanschat, G., Schötzau, D.: Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57, 1093–1113 (2008) zbMATHCrossRefGoogle Scholar
  12. 12.
    Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974) Google Scholar
  14. 14.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1994) zbMATHGoogle Scholar
  15. 15.
    Schötzau, D., Schwab, C., Toselli, A.: Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13, 1413–1436 (2003) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bernardo Cockburn
    • 1
  • Guido Kanschat
    • 2
  • Dominik Schötzau
    • 3
    Email author
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA
  3. 3.Mathematics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations