Journal of Scientific Computing

, Volume 43, Issue 3, pp 326–342 | Cite as

Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems

  • Sashikumaar Ganesan
  • Lutz Tobiska


We give a survey on recent developments of stabilization methods based on local projection type. The considered class of problems covers scalar convection–diffusion equations, the Stokes problem and the linearized Navier–Stokes equations. A new link of local projection to the streamline diffusion method is shown. Numerical tests for different type of boundary layers arising in convection–diffusion problems illustrate the stabilizing properties of the method.


Convection–diffusion equations Incompressible flows Local projection stabilization Finite elements Boundary layers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and GaLS. Comput. Methods Appl. Mech. Eng. 105, 125–142 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004) Google Scholar
  4. 4.
    Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2006) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196, 853–866 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brezzi, F., Marini, D., Russo, A.: Applications of the pseudo residual-free bubbles to the stabilization of convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 166, 51–63 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43, 2012–2033 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comput. 76, 1119–1140 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Burman, E., Fernandez, M.A., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004) zbMATHGoogle Scholar
  14. 14.
    Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Franca, L.P., Russo, A.: Recovering SUPG using Petrov–Galerkin formulations enriched with adjoint residual-free bubbles. Comput. Methods Appl. Mech. Eng. 182, 333–339 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ganesan, S., Matthies, G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes problem. Math. Comput. 77, 2039–2060 (2008) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986) zbMATHGoogle Scholar
  18. 18.
    Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math. Model. Numer. Anal. 33, 1293–1316 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Nävert, U.: A finite element method for convection-diffusion problems. Ph.D. thesis, Chalmers University of Technology, Göteborg (1982) Google Scholar
  22. 22.
    Ohmori, K., Ushijima, T.: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equation. RAIRO Numer. Anal. 18, 309–332 (1984) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion and Flow Problems. Springer, Berlin (1996) zbMATHGoogle Scholar
  24. 24.
    Schieweck, F., Tobiska, L.: A nonconforming finite element method of upstream type applied to the stationary Navier–Stokes equations. RAIRO Numer. Anal. 23, 627–647 (1989) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Schieweck, F., Tobiska, L.: An optimal order error estimate for an upwind discretization of the Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 12, 107–127 (1996) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Tabata, M.: A finite element approximation corresponding to the upwind differencing. Memoirs Numer. Math. 1, 47–63 (1977) MathSciNetGoogle Scholar
  27. 27.
    Tabata, M., Fujima, S.: An upwind finite element scheme for high Reynolds-number flow. Int. J. Numer. Methods Fluids 12, 305–322 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tobiska, L.: On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection–diffusion equations. Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.10.016 (2008) Google Scholar
  29. 29.
    Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Analysis and Computational Mathematics, Department of MathematicsOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations