Journal of Scientific Computing

, Volume 40, Issue 1–3, pp 257–272 | Cite as

Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation

Article

Abstract

In Grote et al. (SIAM J. Numer. Anal., 44:2408–2431, 2006) a symmetric interior penalty discontinuous Galerkin (DG) method was presented for the time-dependent wave equation. In particular, optimal a-priori error bounds in the energy norm and the L 2-norm were derived for the semi-discrete formulation. Here the error analysis is extended to the fully discrete numerical scheme, when a centered second-order finite difference approximation (“leap-frog” scheme) is used for the time discretization. For sufficiently smooth solutions, the maximal error in the L 2-norm error over a finite time interval converges optimally as O(h p+1t 2), where p denotes the polynomial degree, h the mesh size, and Δt the time step.

Keywords

Discontinuous Galerkin methods Finite element methods Wave equation Interior penalty method Leap-frog scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baker, G.A.: Error estimates for finite element methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baker, G.A., Dougalis, V.A., Serbin, S.M.: High order accurate two-step approximations for hyperbolic equations. RAIRO. Modél. Math. Anal. Numér. 13, 201–226 (1979) MATHMathSciNetGoogle Scholar
  5. 5.
    Bécache, E., Joly, P., Tsogka, C.: An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal. 37, 1053–1084 (2000) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam (1978) MATHGoogle Scholar
  7. 7.
    Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: Barth, T., Deconink, H. (eds.) High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Engrg., vol. 9, pp. 69–224. Springer, Berlin (1999) Google Scholar
  8. 8.
    Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lect. Notes Comput. Sci. Engrg., vol. 11, pp. 3–50. Springer, Berlin (2000) Google Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection–dominated problems. J. Sci. Comput. 16, 173–261 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A-priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Eng. 82, 205–222 (1990) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A-priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33, 492–504 (1996) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Diaz, J., Grote, M.J.: Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. (in press) Google Scholar
  15. 15.
    Dupont, T.: L 2-estimates for Galerkin methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999) CrossRefMathSciNetGoogle Scholar
  17. 17.
    French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 66, 491–506 (1996) MathSciNetGoogle Scholar
  18. 18.
    Gekeler, E.: Linear multi-step methods and Galerkin procedures for initial boundary value problems. SIAM J. Numer. Anal. 13, 536–548 (1976) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Geveci, T.: On the application of mixed finite methods to the wave equation. RAIRO Modél. Math. Anal. Numér. 22, 243–250 (1988) MATHMathSciNetGoogle Scholar
  20. 20.
    Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Energy norm error estimates. J. Comput. Appl. Math. 204, 375–386 (2007) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal L 2-norm error estimates. IMA J. Numer. Anal. 28, 440–468 (2008) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids I: Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Houston, P., Jensen, M., Süli, E.: hp-discontinuous Galerkin finite element methods with least-squares stabilization. J. Sci. Comput. 17, 3–25 (2002) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, New York (1987) MATHGoogle Scholar
  26. 26.
    Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22–23, 443–477 (2005) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems I: Semi-discrete error estimates. Technical Report 01-02, TICAM, UT Austin (2001) Google Scholar
  28. 28.
    Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. In: ICM2002-Beijing Satellite Conference on Scientific Computing. Contemporary Mathematics, vol. 329, pp. 271–282. Am. Math. Soc., Providence (2003) Google Scholar
  29. 29.
    Safjan, A., Oden, J.T.: High-order Taylor-Galerkin and adaptive hp methods for second-order hyperbolic systems: Applications to elastodynamics. Comput. Methods Appl. Mech. Eng. 103, 187–230 (1993) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Shubin, G.R., Bell, J.: A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Comput. 8, 135–151 (1987) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BaselBaselSwitzerland
  2. 2.Mathematics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations