Journal of Scientific Computing

, Volume 38, Issue 3, pp 251–289 | Cite as

High Order Strong Stability Preserving Time Discretizations

  • Sigal GottliebEmail author
  • David I. Ketcheson
  • Chi-Wang Shu
Review Article


Strong stability preserving (SSP) high order time discretizations were developed to ensure nonlinear stability properties necessary in the numerical solution of hyperbolic partial differential equations with discontinuous solutions. SSP methods preserve the strong stability properties—in any norm, seminorm or convex functional—of the spatial discretization coupled with first order Euler time stepping. This paper describes the development of SSP methods and the connections between the timestep restrictions for strong stability preservation and contractivity. Numerical examples demonstrate that common linearly stable but not strong stability preserving time discretizations may lead to violation of important boundedness properties, whereas SSP methods guarantee the desired properties provided only that these properties are satisfied with forward Euler timestepping. We review optimal explicit and implicit SSP Runge–Kutta and multistep methods, for linear and nonlinear problems. We also discuss the SSP properties of spectral deferred correction methods.


Strong stability preserving Runge–Kutta methods Multistep methods Spectral deferred correction methods High order accuracy Time discretization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baiotti, L., Hawke, I., Montero, P.J., Loffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., Seidel, E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71 (2005) Google Scholar
  2. 2.
    Balbás, J., Tadmor, E.: A central differencing simulation of the Orszag-Tang vortex system. IEEE Trans. Plasma Sci. 33(2), 470–471 (2005) CrossRefGoogle Scholar
  3. 3.
    Bassano, E.: Numerical simulation of thermo-solutal-capillary migration of a dissolving drop in a cavity. Int. J. Numer. Methods Fluids 41, 765–788 (2003) zbMATHCrossRefGoogle Scholar
  4. 4.
    Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 6, 237–240 (1976) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2003) zbMATHGoogle Scholar
  6. 6.
    Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001) zbMATHCrossRefGoogle Scholar
  7. 7.
    Carrillo, J., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, M.-H., Cockburn, B., Reitich, F.: High-order RKDG methods for computational electromagnetics. J. Sci. Comput. 22–23, 205–226 (2005) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cheng, L.-T., Liu, H., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrodinger equations. Commun. Math. Sci. 1(3), 593–621 (2003) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cheruvu, V., Nair, R.D., Tufo, H.M.: A spectral finite volume transport scheme on the cubed-sphere. Appl. Numer. Math. 57, 1021–1032 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cockburn, B., Qian, J., Reitich, F., Wang, J.: An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics. J. Comput. Phys. 208, 175–195 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dahlquist, G., Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge–Kutta methods. Technical Report, Department of Numerical Analysis and Computational Science, Royal Institute of Technology, Stockholm (1979) Google Scholar
  15. 15.
    Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, vol. 2. North-Holland, Amsterdam (1984) zbMATHGoogle Scholar
  16. 16.
    Del Zanna, L., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows: I. hydrodynamics. Astron. Astrophys. 390, 1177–1186 (2002) zbMATHCrossRefGoogle Scholar
  17. 17.
    Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Feng, L.-L., Shu, C.-W., Zhang, M.: A hybrid cosmological hydrodynamic/n-body code based on a weighted essentially nonoscillatory scheme. Astrophys. J. 612, 1–13 (2004) CrossRefGoogle Scholar
  20. 20.
    Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ferracina, L., Spijker, M.N.: Computing optimal monotonicity-preserving Runge-Kutta methods. Technical Report MI2005-07, Mathematical Institute, Leiden University (2005) Google Scholar
  22. 22.
    Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math. Comput. 249, 201–219 (2005) MathSciNetGoogle Scholar
  23. 23.
    Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. (2008). doi: 10.1016/j.apnum.2007.10.004
  24. 24.
    Gottlieb, D., Tadmor, E.: The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56, 565–588 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–127 (2005) MathSciNetGoogle Scholar
  26. 26.
    Gottlieb, S., Gottlieb, L.J.: Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators. J. Sci. Comput. 18, 83–109 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991) zbMATHGoogle Scholar
  31. 31.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Horvath, Z.: On the positivity of matrix-vector products. Linear Algebra Appl. 393, 253–258 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Horvath, Z.: On the positivity step size threshold of Runge-Kutta methods. Appl. Numer. Math. 53, 341–356 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Huang, C.: Strong stability preserving hybrid methods. Appl. Numer. Math. (2008). doi:  10.1016/j.apnum.2008.03.030 Google Scholar
  38. 38.
    Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75(254), 655–672 (2005) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 201–2042 (2007) CrossRefMathSciNetGoogle Scholar
  40. 40.
    Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Jin, S., Liu, H., Osher, S., Tsai, Y.-H.R.: Computing multivalued physical observables for the semiclassical limit of the Schrodinger equation. J. Comput. Phys. 205, 222–241 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Math. 35, 177–219 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Ketcheson, D.I.: Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. (2008, to appear) Google Scholar
  46. 46.
    Ketcheson, D.I.: Computation of optimal contractive general linear methods and strong stability preserving linear multistep methods. Math. Comput. (to appear) Google Scholar
  47. 47.
    Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge-Kutta methods. Appl. Numer. Math. (2008). doi:  10.1016/j.apnum.2008.03.034 Google Scholar
  48. 48.
    Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Numerically optimal SSP Runge–Kutta methods (website). (2007)
  49. 49.
    Ketcheson, D.I., Robinson, A.C.: On the practical importance of the SSP property for Runge-Kutta time integrators for some common Godunov-type schemes. Int. J. Numer. Methods Fluids 48, 271–303 (2005) zbMATHCrossRefGoogle Scholar
  50. 50.
    Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48, 303–322 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31, 482–528 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations. J. Comput. Phys. 222, 832–848 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Kurganov, A., Tadmor, E.: New high-resolution schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Labrunie, S., Carrillo, J., Bertrand, P.: Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas. J. Comput. Phys. 200, 267–298 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Lax, P.D.: Gibbs Phenomena. J. Sci. Comput. 28, 445–449 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Lenferink, H.W.J.: Contractivity-preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comput. 56, 177–199 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Levy, D., Tadmor, E.: From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26, 633–656 (2008) MathSciNetGoogle Scholar
  61. 61.
    Macdonald, C.B.: Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs. Master’s Thesis, Simon Fraser University (2003) Google Scholar
  62. 62.
    Macdonald, C.B., Gottlieb, S., Ruuth, S.: A numerical study of diagonally split Runge-Kutta methods for PDEs with discontinuities (2008, submitted) Google Scholar
  63. 63.
    Majda, A., Osher, S.: A systematic approach for correcting nonlinear instabilities. the Lax-Wendroff scheme for scalar conservation laws. Numer. Math. 30, 429–452 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Mignone, A.: The dynamics of radiative shock waves: linear and nonlinear evolution. Astrophys. J. 626, 373–388 (2005) CrossRefGoogle Scholar
  65. 65.
    Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. SIAM J. Numer. Anal. 41, 605–623 (2003) CrossRefMathSciNetGoogle Scholar
  66. 66.
    Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50, 19–51 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Pantano, C., Deiterding, R., Hill, D.J., Pullin, D.I.: A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221, 63–87 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Patel, S., Drikakis, D.: Effects of preconditioning on the accuracy and efficiency of incompressible flows. Int. J. Numer. Methods Fluids 47, 963–970 (2005) zbMATHCrossRefGoogle Scholar
  71. 71.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Math. Comput. 75, 183–207 (2006) zbMATHMathSciNetGoogle Scholar
  73. 73.
    Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974–996 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Sahinidis, N.V., Tawarmalani, M.: BARON 7.2: Global optimization of mixed-integer nonlinear programs, user’s manual. Available at (2004)
  77. 77.
    Shu, C.-W.: Total-variation diminishing time discretizations. SIAM J. Sci. Statist. Comput. 9, 1073–1084 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Shu, C.-W.: A survey of strong stability-preserving high-order time discretization methods. In: Collected Lectures on the Preservation of Stability under Discretization. SIAM, Philadelphia (2002) Google Scholar
  79. 79.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42, 271–290 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Spiteri, R.J., Ruuth, S.J.: Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Strang, G.: Accurate partial difference methods II: nonlinear problems. Numer. Math. 6, 37–46 (1964) zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Cole Mathematics Series. Wadsworth and Brooks, California (1989) Google Scholar
  86. 86.
    Sun, Y., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lectures Notes from CIME Course Cetraro, Italy, 1997. Lecture Notes in Mathematics, vol. 1697, pp. 1–150. Springer, Berlin (1998) CrossRefGoogle Scholar
  89. 89.
    Tanguay, M., Colonius, T.: Progress in modeling and simulation of shock wave lithotripsy (swl). In: Fifth International Symposium on Cavitation (CAV2003), number OS-2-1-010 (2003) Google Scholar
  90. 90.
    van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math. 49, 413–424 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45(5), 1871–1901 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  92. 92.
    Wang, Z.J., Liu, Y.: The spectral difference method for the 2D Euler equations on unstructured grids. In: 17th AIAA Computational Fluid Dynamics Conference. AIAA, Washington (2005) Google Scholar
  93. 93.
    Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: Extension to the Euler equations. J. Sci. Comput. 32(1), 45–71 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Continuous Dyn. Syst. Ser B 8, 677–693 (2007) zbMATHMathSciNetGoogle Scholar
  96. 96.
    Zhang, W., MacFayden, A.I.: RAM: A relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164, 255–279 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sigal Gottlieb
    • 1
    Email author
  • David I. Ketcheson
    • 2
  • Chi-Wang Shu
    • 3
  1. 1.Department of MathematicsUniversity of Massachusetts DartmouthNorth DartmouthUSA
  2. 2.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations