Journal of Scientific Computing

, Volume 40, Issue 1–3, pp 86–114 | Cite as

The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem

Article

Abstract

We consider discontinuous Galerkin (DG) approximations of the Maxwell eigenproblem on meshes with hanging nodes. It is known that while standard DG methods provide spurious-free and accurate approximations on the so-called k-irregular meshes, they may generate spurious solutions on general irregular meshes. In this paper we present a mortar-type method to cure this problem in the two-dimensional case. More precisely, we introduce a projection based penalization at non-conforming interfaces and prove that the obtained DG methods are spectrally correct. The theoretical results are validated in a series of numerical experiments on both convex and non convex problem domains, and with both regular and discontinuous material coefficients.

Keywords

Discontinuous Galerkin methods Maxwell’s equations Eigenvalue problems Mortar methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ben Abdallah, A., Ben Belgacem, F., Maday, Y., Rapetti, F.: Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Models Methods Appl. Sci. 14(11), 1635–1656 (2004) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben Belgacem, F., Buffa, A., Maday, Y.: The mortar finite element method for 3D Maxwell equations: first results. SIAM J. Numer. Anal. 39(3), 880–901 (2001). (Electronic) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: The mortar elements method. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Pitman, London (1994) Google Scholar
  5. 5.
    Buffa, A., Christiansen, S.H.: A dual finite element complex on the barycentric refinement. Math. Comput. 76(260), 1743–1769 (2007). (Electronic) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204(2), 317–333 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. Modél. Math. Anal. Numér. 33, 627–649 (1999) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions. http://perso.univ-rennes1.fr/monique.dauge/benchmax.html
  11. 11.
    Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation Part 1. The problem of convergence. RAIRO. Modél. Math. Anal. Numér. 12, 97–112 (1978) MATHMathSciNetGoogle Scholar
  12. 12.
    Dunford, N., Schwartz, J.T.: Spectral Theory: Self Adjoint Operators in Hilbert Space. Interscience, New York (1963) MATHGoogle Scholar
  13. 13.
    Heinrich, B., Pietsch, K.: Nitsche type mortaring of some elliptic problem with corner singularities. Computing 68, 217–238 (2002) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Math., vol. 54. Springer, New York (2008) MATHGoogle Scholar
  15. 15.
    Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966) Google Scholar
  17. 17.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Univ. Press, London (2003) MATHCrossRefGoogle Scholar
  18. 18.
    Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195, 3205–3223 (2006) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Istituto di Matematica Applicata e Tecnologie Informatiche–CNRPaviaItaly
  2. 2.Dipartimento di MatematicaUniversità di PaviaPaviaItaly
  3. 3.Department of Computational and Applies MathematicsRice UniversityHoustonUSA

Personalised recommendations