Advertisement

Journal of Scientific Computing

, Volume 43, Issue 3, pp 343–368 | Cite as

Stabilized Methods for Compressible Flows

  • Thomas J. R. Hughes
  • Guglielmo Scovazzi
  • Tayfun E. Tezduyar
Article

Abstract

This article reviews 25 years of research of the authors and their collaborators on stabilized methods for compressible flow computations. An historical perspective is adopted to document the main advances from the initial developments to modern approaches.

Keywords

Stabilized methods SUPG method Compressible flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliabadi, S.K., Ray, S.E., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Mech. 11, 300–312 (1993) zbMATHCrossRefGoogle Scholar
  2. 2.
    Aliabadi, S.K., Tezduyar, T.E.: Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 107(1–2), 209–223 (1993) zbMATHCrossRefGoogle Scholar
  3. 3.
    Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baba, K., Tabata, M.: On a conservative upwind finite element scheme for the convective diffusion equations. RAIRO. Anal. Numér. 27, 277–282 (1981) MathSciNetGoogle Scholar
  5. 5.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buning, P.G., Jespersen, D.C., Pulliam, T.H., Klopfer, G.H., Chan, W.M., Slotnick, J.P., Krist, S.E., Renze, K.J.: OVERFLOW User’s Manual, Version 1.8s, 28 November 2000. NASA Langley Research Center, Hampton, Virginia (2000) Google Scholar
  7. 7.
    Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow SUPG parameters computed from element matrices. Commun. Numer. Methods Eng. 21, 465–476 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Catabriga, L., Coutinho, A.L.G.A., Tezduyar, T.E.: Compressible flow supg parameters computed from degree-of-freedom submatrices. Comput. Mech. 38, 334–343 (2006) zbMATHCrossRefGoogle Scholar
  9. 9.
    Chalot, F.E.: Industrial aerodynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004) Google Scholar
  10. 10.
    Chalot, F.E., Hughes, T.J.R.: A consistent equilibrium chemistry algorithm for hypersonic flows. Comput. Methods Appl. Mech. Eng. 112, 25–40 (1994) zbMATHCrossRefGoogle Scholar
  11. 11.
    Christie, I., Griffiths, D.F., Sanz-Serna, J.M.: Product approximantion for non-linear problems in the finite element method. IMA J. Numer. Anal. 1, 253–266 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Corsini, A., Rispoli, F., Santoriello, A.: A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput. Methods Appl. Mech. Eng. 194, 4797–4823 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Corsini, A., Rispoli, F., Santoriello, A., Tezduyar, T.E.: Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput. Mech. 38, 356–364 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Estep, D., French, D.A.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO. Numer. Anal. 28, 815–852 (1994) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fletcher, C.A.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225–244 (1983) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    French, D.A.: A space-time finite element method for the wave equation. Comput. Methods Appl. Mech. Eng. 107, 145–157 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    French, D.A.: Continuous Galerkin finite element methods for a forward-backward heat equation. Numer. Methods Partial Differ. Equ. 15, 491–506 (1999) CrossRefMathSciNetGoogle Scholar
  19. 19.
    French, D.A., Jensen, S.: Long time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems. IMA J. Numer. Anal. 14, 421–442 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 65, 491–506 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961) MathSciNetGoogle Scholar
  22. 22.
    Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hauke, G.: A unified approach to compressible and incompressible flows and a new entropy-consistent formulation of the κ-ε model. Ph.D. thesis, Mechanical Engineering Department, Stanford University (1995) Google Scholar
  24. 24.
    Hauke, G.: Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput. Methods Appl. Mech. Eng. 190, 6881–6893 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hauke, G., Hughes, T.J.R.: A unified approach to compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 113, 389–396 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hauke, G., Hughes, T.J.R.: A comparative study of different sets of variables for solving compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 153, 1–44 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Hoffman, J., Johnson, C.: Computability and adaptivity in cfd. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004) Google Scholar
  28. 28.
    Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995) zbMATHCrossRefGoogle Scholar
  29. 29.
    Hughes, T.J.R., Feijóo, G., Mazzei, L., Quincy, J.-B.: The Variational Multiscale Method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998) zbMATHCrossRefGoogle Scholar
  30. 30.
    Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hughes, T.J.R., Mallet, M.: A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 329–336 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Hughes, T.J.R., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Hughes, T.J.R., Mazzei, L., Jensen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(47), 147–162 (2000) Google Scholar
  37. 37.
    Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.: The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence. Phys. Fluids 13, 505–512 (2001) CrossRefGoogle Scholar
  38. 38.
    Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6), 1784–1799 (2001) CrossRefGoogle Scholar
  39. 39.
    Hughes, T.J.R., Scovazzi, G., Franca, L.P.: Multiscale and stabilized methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2004) Google Scholar
  40. 40.
    Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Hughes, T.J.R., Winget, J., Levit, I., Tezduyar, T.E.: New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. In: Atluri, S., Perrone, N. (eds.) Computer Methods for Nonlinear Solids and Structural Mechanics. AMD, vol. 54, pp. 75–109. ASME, New York (1983) Google Scholar
  42. 42.
    Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26(120), 881–891 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Jamet, P.: Stability and convergence of a generalized Crank-Nicolson scheme on a variable mesh for the heat equation. SIAM J. Numer. Anal. 17(4), 530–539 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Jansen, K.E.: A stabilized finite element method for computing turbulence. Comput. Methods Appl. Mech. Eng. 174, 299–317 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Jansen, K.E., Hughes, T.J.R.: A stabilized finite element method for the Reynolds-averaged Navier-Stokes equations. Surv. Math. Ind. 4, 279–317 (1995) zbMATHMathSciNetGoogle Scholar
  46. 46.
    Jansen, K.E., Johan, Z., Hughes, T.J.R.: Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system. Comput. Methods Appl. Mech. Eng. 105, 405–433 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Jansen, K.E., Whiting, C.H., Hulbert, G.M.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: A data parallel finite element method for computational fluid dynamics on the Connection Machine system. Comput. Methods Appl. Mech. Eng. 99, 113–134 (1992) zbMATHCrossRefGoogle Scholar
  49. 49.
    Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: An efficient communications strategy for finite element methods on the Connection Machine CM-5 system. Comput. Methods Appl. Mech. Eng. 113, 363–387 (1994) zbMATHCrossRefGoogle Scholar
  50. 50.
    Johan, Z., Mathur, K.K., Johnsson, S.L., Hughes, T.J.R.: Scalability of finite element applications on distributed-memory parallel computers. Comput. Methods Appl. Mech. Eng. 119, 61–72 (1994) zbMATHCrossRefGoogle Scholar
  51. 51.
    Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107, 117–129 (1993) zbMATHCrossRefGoogle Scholar
  52. 52.
    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984) zbMATHCrossRefGoogle Scholar
  53. 53.
    Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49, 427–444 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Johnson, C., Szepessy, A., Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comput. 54, 107–129 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993) zbMATHCrossRefGoogle Scholar
  56. 56.
    Le Beau, G.J., Tezduyar, T.E.: Finite element computation of compressible flows with the SUPG formulation. In: Advances in Finite Element Analysis in Fluid Dynamics. FED, vol. 123, pp. 21–27. ASME, New York (1991) Google Scholar
  57. 57.
    Le Beau, G.J., Tezduyar, T.E.: Finite element solution of flow problems with mixed-time integration. J. Eng. Mech. 117, 1311–1330 (1991) CrossRefGoogle Scholar
  58. 58.
    Masud, A.: Effects of mesh motion on the stability and convergence of ALE based formulations for moving boundary flows. Comput. Mech. 38(4–5), 430–439 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Mittal, S., Aliabadi, S., Tezduyar, T.: Parallel computation of unsteady compressible flows with the EDICT. Comput. Mech. 23, 151–157 (1999) zbMATHCrossRefGoogle Scholar
  60. 60.
    Mittal, S., Tezduyar, T.: A unified finite element formulation for compressible and incompressible flows using augumented conservation variables. Comput. Methods Appl. Mech. Eng. 161, 229–243 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Moch, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37, 70–88 (1980) CrossRefGoogle Scholar
  62. 62.
    Rifai, S.M., Buell, J.C., Johan, Z., Hughes, T.J.R.: Automotive design applications of fluid flow simulation on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 184, 449–466 (2000) zbMATHCrossRefGoogle Scholar
  63. 63.
    Rifai, S.M., Johan, Z., Wang, W.-P., Grisval, J.-P., Hughes, T.J.R., Ferencz, R.M.: Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms. Comput. Methods Appl. Mech. Eng. 174, 393–417 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007) zbMATHCrossRefGoogle Scholar
  65. 65.
    Rispoli, F., Saavedra, R.: A stabilized finite element method based on SGS models for compressible flows. Comput. Methods Appl. Mech. Eng. 196, 652–664 (2006) zbMATHCrossRefGoogle Scholar
  66. 66.
    Rispoli, F., Saavedra, R., Corsini, A., Tezduyar, T.E.: Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int. J. Numer. Methods Fluids 54, 695–706 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Scovazzi, G.: A discourse on Galilean invariance and SUPG-type stabilization. Comput. Methods Appl. Mech. Eng. 196(4–6), 1108–1132 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Scovazzi, G.: Galilean invariance and stabilized methods for compressible flows. Int. J. Numer. Methods Fluids 54(6–8), 757–778 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Scovazzi, G.: Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations. Comput. Methods Appl. Mech. Eng. 196(4–6), 966–978 (2007) Google Scholar
  70. 70.
    Scovazzi, G., Christon, M.A., Hughes, T.J.R., Shadid, J.N.: Stabilized shock hydrodynamics: I. A Lagrangian method. Comput. Methods Appl. Mech. Eng. 196(46), 923–966 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Shakib, F., Hughes, T.J.R.: A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng. 87, 35–58 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Shakib, F., Hughes, T.J.R., Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 89, 141–219 (1991) CrossRefMathSciNetGoogle Scholar
  73. 73.
    Spradley, L.W., Stalnaker, J.F., Ratliff, A.W.: Computation of three-dimensional viscous flows with the Navier-Stokes equations. In: AIAA-80-1348. AIAA 13th Fluid and Plasma Dynamics Conference, Snowmass, Colorado (1980) Google Scholar
  74. 74.
    Szepessy, A.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Tabata, M.: A finite element approximation corrresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977) zbMATHMathSciNetGoogle Scholar
  76. 76.
    Tabata, M.: Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J. Math. Kyoto Univ. 18, 327–351 (1978) zbMATHMathSciNetGoogle Scholar
  77. 77.
    Tabata, M.: Some applications of the upwind finite element method. Theor. Appl. Mech. 27, 277–282 (1979) Google Scholar
  78. 78.
    Tabata, M.: Symmetric finite element approximations for convection-diffusion problems. Theor. Appl. Mech. 33, 445–453 (1985) zbMATHGoogle Scholar
  79. 79.
    Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., Litke, M.: Flow simulation and high performance computing. Comput. Mech. 18, 397–412 (1996) zbMATHCrossRefGoogle Scholar
  80. 80.
    Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26(10), 27–36 (1993) CrossRefGoogle Scholar
  81. 81.
    Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Tezduyar, T.E.: Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), Swansea, Wales, United Kingdom (2001) Google Scholar
  83. 83.
    Tezduyar, T.E.: Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the First South-American Congress on Computational Mechanics (CD-ROM), Santa Fe–Parana, Argentina (2002) Google Scholar
  84. 84.
    Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Tezduyar, T.E.: Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyäskylä, Finland (2004) Google Scholar
  86. 86.
    Tezduyar, T.E.: Finite element methods for fluid dynamics with moving boundaries and iterfaces. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3. Wiley, New York (2004), Fluids, Chap. 17 Google Scholar
  87. 87.
    Tezduyar, T.E.: Calculation of the stabilization parameters in finite element formulations of flow problems. In: Idelsohn, S., Sonzogni, V. (eds.) Applications of Computational Mechanics in Structures and Fluids, pp. 1–19. CIMNE, Barcelona (2005) Google Scholar
  88. 88.
    Tezduyar, T.E., Aliabadi, S.K., Behr, M., Mittal, S.: Massively parallel finite element simulation of compressible and incompressible flows. Comput. Methods Appl. Mech. Eng. 119, 157–177 (1994) zbMATHCrossRefGoogle Scholar
  89. 89.
    Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94, 339–351 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94, 353–371 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    Tezduyar, T.E., Hughes, T.J.R.: Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA (1982). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_1997034954.pdf
  92. 92.
    Tezduyar, T.E., Hughes, T.J.R.: Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada (1983) Google Scholar
  93. 93.
    Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000) zbMATHCrossRefGoogle Scholar
  94. 94.
    Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986) zbMATHCrossRefGoogle Scholar
  95. 95.
    Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  96. 96.
    Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput. Fluids 36, 147–159 (2007) zbMATHCrossRefGoogle Scholar
  97. 97.
    Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the supg formulation and YZβ shock-capturing. Comput. Mech. 38, 469–481 (2006) zbMATHCrossRefGoogle Scholar
  98. 98.
    Venkatakrishnan, V., Allmaras, S., Kamenetskii, D., Johnson, F.: Higher order schemes for the compressible Navier-Stokes equations. In: AIAA 2003-3987. AIAA 16th Computational Fluid Dynamics Conference, Orlando, Florida, 23–26 June 2003 Google Scholar
  99. 99.
    Whiting, C.H., Jansen, K.E., Dey, S.: Hierarchical basis for stabilized finite element methods for compressible flows. Comput. Methods Appl. Mech. Eng. 192, 5167–5185 (2003) zbMATHCrossRefGoogle Scholar
  100. 100.
    Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equation at low Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas J. R. Hughes
    • 1
  • Guglielmo Scovazzi
    • 2
  • Tayfun E. Tezduyar
    • 3
  1. 1.Institute for Computational Sciences and EngineeringThe University of Texas at AustinAustinUSA
  2. 2.1431 Computational Shock- and Multi-physics DepartmentSandia National LaboratoriesAlbuquerqueUSA
  3. 3.Mechanical EngineeringRice University–MS 321HoustonUSA

Personalised recommendations