Advertisement

Journal of Scientific Computing

, Volume 37, Issue 3, pp 367–382 | Cite as

Image Super-Resolution by TV-Regularization and Bregman Iteration

  • Antonio MarquinaEmail author
  • Stanley J. Osher
Article

Abstract

In this paper we formulate a new time dependent convolutional model for super-resolution based on a constrained variational model that uses the total variation of the signal as a regularizing functional. We propose an iterative refinement procedure based on Bregman iteration to improve spatial resolution. The model uses a dataset of low resolution images and incorporates a downsampling operator to relate the high resolution scale to the low resolution one. We present an algorithm for the model and we perform a series of numerical experiments to show evidence of the good behavior of the numerical scheme and quality of the results.

Keywords

Super-resolution Total variation restoration Bregman iteration Downsampling Edge preserving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967) CrossRefGoogle Scholar
  2. 2.
    Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Candela, V.F., Marquina, A., Serna, S.: A local spectral inversion of a linearized TV model for denoising and deblurring. IEEE Trans. Image Process. 12(7), 808–816 (2003) CrossRefGoogle Scholar
  4. 4.
    Chan, T.F., Ng, M.K., Yau, A.C., Yip, A.M.: Superresolution image reconstruction using fast inpainting algorithms. Appl. Comput. Harmon. Anal. 23, 3–24 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chaudhuri, S.: Super-Resolution Imaging. Kluwer Academic, Dordrecht (2001) Google Scholar
  6. 6.
    Gopinath, R.A., Burrus, C.S.: On upsampling, downsampling and rational sampling rate filter banks. IEEE Trans. Signal Process. 42, 812–824 (1994) CrossRefGoogle Scholar
  7. 7.
    He, L., Marquina, A., Osher, S.J.: Blind deconvolution using TV regularization and Bregman iteration. Int. J. Imaging Syst. Technol. 15, 74–83 (2005) CrossRefGoogle Scholar
  8. 8.
    Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion and transparency. J. Vis. Commun. Image Represent. 4, 324–335 (1993) CrossRefGoogle Scholar
  9. 9.
    Malgouyres, F.: Total Variation Based oversampling of noisy images. Lect. Notes Comput. Sci. 2106, 111–122 (2001) CrossRefGoogle Scholar
  10. 10.
    Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: a mathematical and numerical analysis. SIAM J. Numer. Anal. 39, 1–37 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marquina, A.: Inverse scale space methods for blind deconvolution. UCLA CAM Report 06-36 (2006) Google Scholar
  12. 12.
    Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22(2), 387–405 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Osher, S.J., Burger, M., Goldfarb, D., Xu, J., Jin, W.: An Iterative regularization method for total variation based image restoration. Multiscale Model Simul. 4, 460–489 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Peeters, R.R., Kornprobst, P., Nikolova, M., Sumert, S., Vieville, T., Malandain, G., Derich, R., Faugeras, O., Ng, M., Van Hecke, P.: The use of super-resolution techniques to reduce slice thickness. Int. J. Imaging Syst. Technol. 14, 131–138 (2004) CrossRefGoogle Scholar
  15. 15.
    Rudin, L., Osher, S.J.: Total variation based image restoration with free local constraints. In Proc. of the IEEE ICIP-94, vol. 1, pp. 31–35, Austin, TX (1994) Google Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) zbMATHCrossRefGoogle Scholar
  17. 17.
    Scherzer, O., Groetsch, C.: Inverse scale space theory for inverse problems. In: Kerckhove, M. (ed.) Scale-Space and Morphology in Computer Vision. Lecture Notes in Computer Science, vol. 2106, pp. 317–325. Springer, New York (2001) CrossRefGoogle Scholar
  18. 18.
    Unser, M., Aldrouli, A., Eden, M.: Enlargement or reduction of digital image with minimum loss of information. IEEE Trans. Image Process. 4, 247–258 (1995) CrossRefGoogle Scholar
  19. 19.
    Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7(6), 813–824 (1998) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Matematica AplicadaUniversidad de ValenciaBurjassotSpain
  2. 2.Department of MathematicsUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations