Journal of Scientific Computing

, Volume 37, Issue 1, pp 89–102

Mathematical and Numerical Aspects of a Phase-field Approach to Critical Nuclei Morphology in Solids

Article

Abstract

We investigate a phase-field model for homogeneous nucleation and critical nucleus morphology in solids. We analyze the mathematical properties of a free energy functional that includes the long-range, anisotropic elastic interactions. We describe the numerical algorithms used to search for the saddle points of such a free energy functional based on a minimax technique and the Fourier spectral implementation. It is demonstrated that the phase-field model is mathematically well defined and is able to efficiently predict the critical nucleus morphology in elastically anisotropic solids without making a priori assumptions.

Keywords

Nucleation Critical nuclei Phase field simulation Anisotropic elasticity Solid state phase transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D., McFadden, G., Wheeler, A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brener, E., Iordanskii, S., Marchenko, V.: Elastic effects on the kinetics of a phase transition. Phys. Rev. Lett. 82, 1506–1509 (1999) CrossRefGoogle Scholar
  3. 3.
    Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems part I: branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cahn, J., Hilliard, J.: Free energy of a nonuniform system, III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959) CrossRefGoogle Scholar
  5. 5.
    Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Sci. 32, 113–140 (2002) CrossRefGoogle Scholar
  6. 6.
    Chu, Y., Moran, B., Reid, A., Olson, G.: A model for nonclassical nucleation of solid-solid structural phase transformations. Metall. Mater. Trans. A 31, 1321–1331 (2000) CrossRefGoogle Scholar
  7. 7.
    Conti, S., Schweizer, B.: A sharp-interface limit for a two-well problem in geometrically linear elasticity. Arch. Ration Mech. Anal. 179, 413–452 (2006) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg-Landau Model of superconductivity. SIAM Rev. 34, 54–81 (1992) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Du, Q., Zhu, L.: Analysis of a mixed finite element method for a phase field elastic bending energy model of vesicle membrane deformation. J. Comput. Math. 24, 265–280 (2006) MATHMathSciNetGoogle Scholar
  11. 11.
    E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002) CrossRefGoogle Scholar
  12. 12.
    Eshelby, J.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561–569 (1959) MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998) MATHGoogle Scholar
  14. 14.
    Feng, W., Yu, P., Hu, S., Liu, Z., Du, Q., Chen, L.: Spectral implementation of an adaptive moving mesh method for phase-field equations. J. Comput. Phys. 220, 498–510 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Feng, X., Prohl, A.: Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73, 541–567 (2004) MATHMathSciNetGoogle Scholar
  16. 16.
    Fischer, S., Karplus, M.: Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem. Phys. Lett. 194, 252–261 (1992) CrossRefGoogle Scholar
  17. 17.
    Gagne, C., Gould, H., Klein, W., Lookman, T., Saxena, A.: Simulations of spinodal nucleation in systems with elastic interactions. Phys. Rev. Lett. 95, 095701 (2005) CrossRefGoogle Scholar
  18. 18.
    Garcke, H., Kwak, D.: On asymptotic limits of Cahn-Hilliard systems with elastic misfit. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 87–111. Springer, Berlin (2006) CrossRefGoogle Scholar
  19. 19.
    Garcke, H., Rumpf, M., Weikard, U.: The Cahn-Hilliard equation with elasticity, finite element approximation and qualitative analysis. Interfaces Free Bound. 3, 101–118 (2001) MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gránásy, L.: Diffuse interface theory of nucleation. J. Non-Cryst. Solids 162, 301–303 (1993) CrossRefGoogle Scholar
  21. 21.
    Henkelman, G., Jonsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999) CrossRefGoogle Scholar
  22. 22.
    Henkelman, G., Uberuaga, B., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000) CrossRefGoogle Scholar
  23. 23.
    Hu, S., Chen, L.: A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater. 49, 1879–1890 (2001) CrossRefGoogle Scholar
  24. 24.
    Ionova, I., Carter, E.: Ridge method for finding saddle points on potential energy surfaces. J. Chem. Phys. 98, 6377–6386 (1993) CrossRefGoogle Scholar
  25. 25.
    Jerrad, R., Sternberg, P.: Critical points via Γ-convergence: general theory and applications. Preprint (2007) Google Scholar
  26. 26.
    Khachaturyan, A.: Theory of Structural Transformations in Solids. Wiley, New York (1983) Google Scholar
  27. 27.
    Kohn, R., Reznikoff, M., Tonegawa, Y.: The sharp-interface limit of the action functional for Allen-Cahn in one space dimension. Calc. Var. Partial Differ. Equ. 25, 503–534 (2006) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Leo, P., Lowengrub, J., Jou, H.: A diffuse interface model for microstructure evolution in elastically stressed solids. Acta Mater. 61, 2113–2130 (1998) CrossRefGoogle Scholar
  29. 29.
    Li, X., Thornton, K., Nie, Q., Voorhees, P., Lowengrub, J.: Two- and three-dimensional equilibrium morphology of a misfitting particle and the Gibbs-Thomson effect. Acta Mater. 52, 5829–5843 (2004) CrossRefGoogle Scholar
  30. 30.
    Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDE. SIAM J. Sci. Comput. 23, 840–865 (2001) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Moré, J., Munson, T.: Computing mountain passes and transition states. Math. Program. 100, 151–182 (2004) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Onuki, A.: Ginzburg-Landau approach to elastic effects in the phase-separation of solids. J. Phys. Soc. Jpn. 58, 3065–3068 (1989) CrossRefGoogle Scholar
  33. 33.
    Poduri, R., Chen, L.: Non-classical nucleation theory of ordered intermetallic precipitates—application to the Al-Li alloy. Acta Mater. 44, 4253–4259 (1996) CrossRefGoogle Scholar
  34. 34.
    Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Am. Math. Soc., Providence (1986) Google Scholar
  35. 35.
    Roy, A., Rickman, J., Gunton, J., Elder, K.: Simulation study of nucleation in a phase-field model with nonlocal interactions. Phys. Rev. E 57, 2610–2617 (1998) CrossRefGoogle Scholar
  36. 36.
    Sagui, C., Somoza, A.M., Desai, R.: Spinodal decomposition in an order-disorder phase-transition with elastic fields. Phys. Rev. E 50, 4865–4879 (1994) CrossRefGoogle Scholar
  37. 37.
    Wang, Y., Chen, L.Q., Khachaturyan, A.G.: Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Mater. 41, 279–296 (1993) CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Khachaturyan, A.: Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45, 759–773 (1997) CrossRefGoogle Scholar
  39. 39.
    Yu, P., Hu, S., Du, Q., Chen, L.: An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models. J. Comput. Phys. 208, 34–50 (2005) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Zhang, L., Chen, L., Du, Q.: Morphology of critical nuclei in solid state phase transformations. Phys. Rev. Lett. 98, 265703 (2007) CrossRefGoogle Scholar
  41. 41.
    Zhang, L., Chen, L., Du, Q.: Diffuse-interface description of strain-dominated morphology of critical nuclei in phase transformations. Acta Mater. (2008). doi:10.1016/j.actamat.2008.03.043 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsPenn State UniversityCentre CountyUSA
  2. 2.Department of Materials Science and EngineeringPenn State UniversityCentre CountyUSA
  3. 3.Department of Mathematics and Department of Materials Science and EngineeringPenn State UniversityCentre CountyUSA

Personalised recommendations