Journal of Scientific Computing

, Volume 35, Issue 2–3, pp 77–98 | Cite as

Finite Element-Based Level Set Methods for Higher Order Flows

  • Martin BurgerEmail author
  • Christina Stöcker
  • Axel Voigt


In this paper we shall discuss the numerical simulation of geometric flows by level set methods. Main examples under considerations are higher order flows, such as surface diffusion and Willmore flow as well as variants of them with more complicated surface energies. Such problems find various applications, e.g. in materials science (thin film growth, grain boundary motion), biophysics (membrane shapes), and computer graphics (surface smoothing and restoration).

We shall use spatial discretizations by finite element methods and semi-implicit time stepping based on local variational principles, which allows to maintain dissipation properties of the flows by the discretization. In order to compensate for the missing maximum principle, which is indeed a major hurdle for the application of level set methods to higher order flows, we employ frequent redistancing of the level set function.

Finally we also discuss the solution of the arising discretized linear systems in each time step and some particular advantages of the finite element approach such as the variational formulation which allows to handle the higher order and various anisotropies efficiently and the possibility of local adaptivity around the zero level set.


Level set methods Higher-order geometric flows Finite element methods Semi-implicit time stepping Energy dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almgren, F., Taylor, J.E.: Optimal geometry in equilibrium and growth. Fractals 3, 713–723 (1996) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Gigli, N., Savare, G.: Metric Gradient Flows. Birkhäuser, Basel (2005) zbMATHGoogle Scholar
  3. 3.
  4. 4.
    Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203, 321–343 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barrett, J.W., Blowey, J.F.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comp. 68, 487–517 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) zbMATHGoogle Scholar
  7. 7.
    Bornemann, F., Rasch, C.: Finite-Element discretization of static Hamilton-Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9, 57–69 (2006) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Burger, M.: Numerical simulation of anisotropic surface diffusion with curvature-dependent energy. J. Comp. Phys. 203, 602–625 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Burger, M., Hausser, F., Stöcker, C., Voigt, A.: A level set approach to anisotropic flows with curvature regularization. J. Comp. Phys. 225, 183–205 (2007) zbMATHCrossRefGoogle Scholar
  10. 10.
    Carter, W.C., Cahn, J.W., Taylor, J.E.: Variational methods for microstructural evolution. JOM 49(12), 30–36 (1998) CrossRefGoogle Scholar
  11. 11.
    Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6, 195–218 (2004) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Clarenz, U., Haußer, F., Rumpf, M., Voigt, A., Weikard, U.: On level set formulations for anisotropic fourth order geometric evolution problems. In: Voigt, A. (ed.) Multiscale Modeling in Epitaxial Growth, ISNM 149, pp. 227–237. Birkhäuser, Basel (2005) CrossRefGoogle Scholar
  13. 13.
    Deckelnick, K., Dziuk, G.: Error estimates for a semi implicit fully discrete finite element scheme for mean curvature flow of graphs. Interfaces Free Bound. 2, 341–359 (2000) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numer. Math. 91, 423–452 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Deckelnick, K., Dziuk, G., Elliott, C.M.: Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs. Isaac Newton Institute, Cambridge (2003). Preprint Google Scholar
  16. 16.
    Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. (2005), 139–232 Google Scholar
  17. 17.
    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries. Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001) zbMATHGoogle Scholar
  18. 18.
    DiCarlo, A., Gurtin, M., Podio-Guidugli, P.: A regularized equation for anisotropic motion by curvature. SIAM J. Appl. Math. 52, 1111–1119 (1992) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6, 361–378 (2004) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Fried, E., Gurtin, M.E.: A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. Adv. Appl. Mech. 40, 1–177 (2004) CrossRefGoogle Scholar
  21. 21.
    Glasner, K.: A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16, 49–66 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Haußer, F., Voigt, A.: A discrete scheme for regularized anisotropic surface diffusion, a sixth order geometric evolution equation. Interfaces Free Bound. 7, 1–17 (2005) MathSciNetGoogle Scholar
  23. 23.
    Haußer, F., Voigt, A.: A discrete scheme for regularized anisotropic curve shortening flow. Appl. Math. Lett. 19, 691–698 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Haußer, F., Voigt, A.: A discrete scheme for parametric anisotropic surface diffusion. J. Sci. Comput. 30, 223–235 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951) zbMATHCrossRefGoogle Scholar
  26. 26.
    Gurtin, M.E., Jabbour, M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Rat. Mech. Anal. 163, 171–208 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) CrossRefGoogle Scholar
  28. 28.
    Osher, S.J., Fedkiw, R.P.: The Level Set Method and Dynamic Implicit Surfaces. Springer, New York (2002) Google Scholar
  29. 29.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Rätz, A., Voigt, A.: Higher order regularization of anisotropic geometric evolution equations in three dimensions. J. Comput. Theor. Nanosci. 3, 543–560 (2006) Google Scholar
  31. 31.
    Rusu, R.E.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comp. 19, 439–456 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Stöcker, C.: Level set methods for higher order evolution laws. PhD-thesis, Mathematics Department, Technische Universität Dresden (2008).
  34. 34.
    Stöcker, C., Vey, S., Voigt, A.: AMDiS—Adaptive multidimensional simulations: composite finite elements and signed distance functions. WSEAS Trans. Circ. Syst. 4, 111–116 (2005) Google Scholar
  35. 35.
    Vey, S., Voigt, A.: AMDiS—adaptive multidimensional simulations: Object oriented software concepts for scientific computing. WSEAS Trans. Syst. 3, 1564–159 (2004) Google Scholar
  36. 36.
    Vey, S., Voigt, A.: AMDiS—adaptive multidimensional simulations. Comp. Vis. Sci. 10, 57–67 (2007) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Vey, S., Voigt, A.: Adaptive full domain covering meshes for parallel finit element computations. Comput. 81, 813–820 (2007) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikWestfälische Wilhelms Universität (WWU)MünsterGermany
  2. 2.Institut für Wissenschaftliches RechnenTechnische Universität DresdenDresdenGermany

Personalised recommendations