Journal of Scientific Computing

, Volume 35, Issue 2–3, pp 266–299 | Cite as

A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

Article

Abstract

In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth.

Keywords

Ghost fluid method Ghost cell method Level set method Tumor growth NAGSI Nonlinear elliptic equations Heaviside function Heterogeneous media Heterogeneous tissue structure Adaptive normal vector calculation Normal derivative jump boundary condition Poisson equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life 12(4), 617–634 (2006). doi:10.1162/artl.2006.12.4.617 CrossRefGoogle Scholar
  2. 2.
    Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999). doi:10.1006/jcph.1998.6090 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Adam, J.: General aspects of modeling tumor growth and the immune response. In: Adam, J., Bellomo, N. (eds.) A Survey of Models on Tumor Immune Systems Dynamics, pp. 15–87. Birkhäuser, Boston (1996) Google Scholar
  4. 4.
    Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12(5), 737–754 (2002). doi:10.1142/S0218202502001878 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915 (2006). doi:10.1016/j.cell.2006.09.042 CrossRefGoogle Scholar
  6. 6.
    Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumor growth: The contribution of mathematical modeling. Bull. Math. Biol. 66(5), 1039–1091 (2004). doi:10.1016/j.bulm.2003.11.002 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bellomo, N., de Angelis, E., Preziosi, L.: Multiscale modelling and mathematical problems related to tumor evolution and medical therapy. J. Theor. Med. 5(2), 111–136 (2003). doi:10.1080/1027336042000288633 MATHCrossRefGoogle Scholar
  8. 8.
    Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003). doi:10.1093/imammb/20.4.341 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Byrne, H.M., Alarcón, T., Owen, M.R., Webb, S.D., Maini, P.K.: Modeling aspects of cancer dynamics: A review. Philos. Trans. R. Soc. A 364(1843), 1563–1578 (2006). doi:10.1098/rsta.2006.1786 CrossRefGoogle Scholar
  10. 10.
    Chaplain, M.A.J., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23(3), 192–229 (2006). doi:10.1093/imammb/dql009 CrossRefGoogle Scholar
  11. 11.
    Chatterjee, C., Chong, E.K.P.: Efficient algorithms for finding the centers of conics and quadrics in noisy data. Pattern. Recogn. 30(5), 673–684 (1997). doi:10.1016/S0031-3203(96)00122-7 CrossRefGoogle Scholar
  12. 12.
    Cowles, G., Martinelli, L.: Control theory based shape design for the incompressible Navier-Stokes equations. Int. J. Comput. Fluid Dyn. 17(6), 499–514 (2003). doi:10.1080/10618560310001614773 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cristini, V., Lowengrub, J.S., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003). doi:10.1007/s00285-002-0174-6 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Engquist, B., Tornberg, A.K., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005). doi:10.1016/j.jcp.2004.09.018 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152(2), 457–492 (1999). doi:10.1006/jcph.1999.6236 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Frieboes, H.B., Lowengrub, J.S., Wise, S., Zheng, X., Macklin, P., Bearer, E.L., Cristini, V.: Computer simulation of glioma growth and morphology. Neuro Image 37(S1), S59–S70 (2007). doi:10.1016/j.neuroimage.2007.03.008 Google Scholar
  17. 17.
    Frieboes, H.B., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional diffuse-interface simulation of multispecies tumor growth-II: Investigation of tumor invasion. Bull. Math. Biol. (2008, in press) Google Scholar
  18. 18.
    Galaris, D., Barbouti, A., Korantzopoulos, P.: Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Curr. Pharm. Des. 12(23), 2875–2890 (2006). doi:10.2174/138161206777947614 CrossRefGoogle Scholar
  19. 19.
    Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005). doi:10.1016/j.jcp.2004.07.018 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003). doi:10.1023/A:1025399807998 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gibou, F., Fedkiw, R., Cheng, L.T., Kang, M.: A second order accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002). doi:10.1006/jcph.2001.6977 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Glimm, J., Marchesin, D., McBryan, O.: A numerical-method for 2 phase flow with an unstable interface. J. Comput. Phys. 39, 179–200 (1981). doi:10.1016/0021-9991(81)90144-3 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1997). doi:10.1090/S0025-5718-98-00913-2 MathSciNetGoogle Scholar
  24. 24.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi:10.1137/S003614450036757X MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hallett, A.H., Ma, Y., Yin, Y.P.: Hybrid algorithms with automatic switching for solving nonlinear equation systems. J. Econ. Dyn. Control 20(6), 1051–1071 (1996). doi:10.1016/0165-1889(95)00889-6 MATHCrossRefGoogle Scholar
  26. 26.
    Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol. 53(1), 86–134 (2006). doi:10.1007/s00285-006-0378-2 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000). doi:10.1137/S106482759732455X MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(2), 202–228 (1996). doi:10.1006/jcph.1996.0130 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kloner, R.A., Jennings, R.B.: Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104(24), 2981–2989 (2001) CrossRefGoogle Scholar
  30. 30.
    LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994). doi:10.1137/0731054 MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Lin, P.T., Baker, T.J., Martinelli, L., Jameson, A.: Two-dimensional implicit time-dependent calculations on adaptive unstructured meshes with time evolving boundaries. Int. J. Numer. Methods Fluids 50(2), 199–218 (2006). doi:10.1002/fld.1050 MATHCrossRefGoogle Scholar
  32. 32.
    Liu, X.D., Fedkiw, R., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151–178 (2000). doi:10.1006/jcph.2000.6444 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lowengrub, J.S., Macklin, P.: A centimeter-scale nonlinear model of tumor growth in complex, heterogeneous tissues. J. Math. Biol. (2008, in press) Google Scholar
  34. 34.
    Macklin, P.: Numerical simulation of tumor growth and chemotherapy. M.S. thesis, University of Minnesota School of Mathematics (2003) Google Scholar
  35. 35.
    Macklin, P.: Toward computational oncology: nonlinear simulation of centimeter-scale tumor growth in complex, heterogeneous tissues. Ph.D. dissertation, University of California, Irvine Department of Mathematics (2007) Google Scholar
  36. 36.
    Macklin, P., Lowengrub, J.S.: Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191–220 (2005). doi:10.1016/j.jcp.2004.08.010 MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Macklin, P., Lowengrub, J.S.: An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006). doi:10.1016/j.jcp.2005.11.016 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Macklin, P., Lowengrub, J.S.: Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245(4), 677–704 (2007). doi:10.1016/j.jtbi.2006.12.004 CrossRefMathSciNetGoogle Scholar
  39. 39.
    Macklin, P., McDougall, S., Anderson, A.R.A., Chaplain, M.A.J., Cristini, V., Lowengrub, J.S.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. (2008, in press) Google Scholar
  40. 40.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology-independent shape modeling. J. Math. Imaging Vis. 6(2–3), 269–289 (1996). doi:10.1007/BF00119843 CrossRefMathSciNetGoogle Scholar
  41. 41.
    McMullen, M.S., Jameson, A.: The computational efficiency of non-linear frequency domain methods. J. Comput. Phys. 212(2), 637–661 (2006). doi:10.1016/j.jcp.2005.07.021 MATHCrossRefGoogle Scholar
  42. 42.
    Osher, S., Fedkiw, R.: Level set methods: An overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001). doi:10.1006/jcph.2000.6636 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002) Google Scholar
  44. 44.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). doi:10.1016/0021-9991(88)90002-2 MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-Based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999). doi:10.1006/jcph.1999.6345 MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Quaranta, V., Weaver, A.M., Cummings, P.T., Anderson, A.R.A.: Mathematical modeling of cancer: The future of prognosis and treatment. Clin. Chim. Acta 357(2), 173–179 (2005). doi:10.1016/j.cccn.2005.03.023 CrossRefGoogle Scholar
  47. 47.
    Sanga, S., Sinek, J.P., Frieboes, H.B., Fruehauf, J.P., Cristini, V.: Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev. Anticancer Ther. 6(10), 1361–1376 (2006). doi:10.1586/14737140.6.10.1361 CrossRefGoogle Scholar
  48. 48.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  49. 49.
    Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35(1), 341–372 (2003). doi:10.1146/annurev.fluid.35.101101.161105 CrossRefMathSciNetGoogle Scholar
  50. 50.
    Sleijpen, G.L.G., van der Vorst, H.A., Fokkema, D.R.: Bicgstab() and other hybrid Bi-CG methods. Numer. Algorithms 1(7), 75–109 (1994). doi:10.1007/BF02141261 CrossRefGoogle Scholar
  51. 51.
    Sussman, M., Fatemi, E.: An efficient, interface preserving level set re-distancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999). doi:10.1137/S1064827596298245 MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Vrahatis, M.N., Magoulas, G.D., Plagianakos, V.P.: From linear to nonlinear iterative methods. Appl. Numer. Math. 45(1), 59–77 (2003). doi:10.1016/S0168-9274(02)00235-0 MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Nonlinear simulation of three-dimensional multispecies tumor growth-I: Model and numerical method. J. Theor. Biol. (2008, to appear) Google Scholar
  54. 54.
    Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. (2007). doi:10.1016/j.jcp.2006.10.030
  55. 55.
    Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996). doi:10.1006/jcph.1996.0167 MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull. Math. Biol. 67(2), 211–259 (2005). doi:10.1016/j.bulm.2004.08.001 CrossRefMathSciNetGoogle Scholar
  57. 57.
    Zhou, Y.C., Wei, G.W.: On the ficticious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys. 219(1), 228–246 (2006). doi:10.1016/j.jcp.2006.03.027 MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1–30 (2006). doi:10.1016/j.jcp.2005.07.022 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.SHISU. of Texas Health Science CenterHoustonUSA
  2. 2.Dept. of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations