Advertisement

Journal of Scientific Computing

, Volume 35, Issue 2–3, pp 330–349 | Cite as

A Local Semi-Implicit Level-Set Method for Interface Motion

  • David Salac
  • Wei LuEmail author
Article

Abstract

This paper proposes and implements a novel hybrid level set method which combines the numerical efficiency of the local level set approach with the temporal stability afforded by a semi-implicit technique. By introducing an extraction/insertion algorithm into the local level set approach, we can accurately capture complicated behaviors such as interface separation and coalescence. This technique solves a well known problem when treating a semi-implicit system with spectral methods, where spurious interface movements emerge when two interfaces are close to each other. Numerical experiments show that the proposed method is stable, efficient and scales up well into three dimensional problems.

Keywords

Interface motion Surface diffusion Level set approach Semi-implicit scheme Localized treatment Hybrid algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, S., Merriman, B., Kang, M., Caflisch, R.E., Ratsch, C., Cheng, L.T., Gyure, M., Fedkiw, R.P., Anderson, C., Osher, S.: A level set method for thin film epitaxial growth. J. Comput. Phys. 167, 475–500 (2001) zbMATHCrossRefGoogle Scholar
  3. 3.
    Chopp, D.L., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1, 1–18 (1999) MathSciNetGoogle Scholar
  4. 4.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005) CrossRefGoogle Scholar
  5. 5.
    Jiang, G.S., Peng, D.P.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Khenner, M., Averbuch, A., Israeli, M., Nathan, M.: Numerical simulation of grain-boundary grooving by level set method. J. Comput. Phys. 170, 764–784 (2001) zbMATHCrossRefGoogle Scholar
  7. 7.
    Li, Z.L., Zhao, H.K., Gao, H.J.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152, 281–304 (1999) zbMATHCrossRefGoogle Scholar
  8. 8.
    Lu, W., Salac, D.: Programmable nanoscale domain patterns in multilayers. Acta Mater. 53, 3253–3260 (2005) CrossRefGoogle Scholar
  9. 9.
    Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level set methods: Application to tumor growth. J. Comput. Phys. 215, 392–401 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mazor, A., Srolovitz, D.J., Hagan, P.S., Bukiet, B.G.: Columnar growth in thin-films. Phys. Rev. Lett. 60, 424–427 (1988) CrossRefGoogle Scholar
  11. 11.
    Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) CrossRefGoogle Scholar
  12. 12.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed—algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Patra, M., Karttunen, M.: Stencils with isotropic discretization error for differential operators. Numer. Methods Partial Differ. Equ. 22, 936–953 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Peng, D.P., Merriman, B., Osher, S., Zhao, H.K., Kang, M.J.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Salac, D., Lu, W.: Design nanocrack patterns in heterogeneous films. Nanotechnology 17, 5185–5191 (2006) CrossRefGoogle Scholar
  16. 16.
    Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Suo, Z., Hong, W.: Programmable motion and patterning of molecules on solid surfaces. Proc. Natl. Acad. Sci. U.S.A. 101, 7874–7879 (2004) CrossRefGoogle Scholar
  20. 20.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible 2-phase flow. J. Comput. Phys. 114, 146–159 (1994) zbMATHCrossRefGoogle Scholar
  21. 21.
    van der Vorst, H.A.: Bi-Cgstab—a fast and smoothly converging variant of Bi-Cg for the solution of nonsymmetric linear-systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yap, Y.F., Chai, J.C., Wong, T.N., Toh, K.C., Zhang, H.Y.: A global mass correction scheme for the level-set method. Numer. Heat Transf. B Fundam. 50, 455–472 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations