Journal of Scientific Computing

, Volume 34, Issue 3, pp 237–246

Superconvergence of a Chebyshev Spectral Collocation Method



We reveal the relationship between a Petrov–Galerkin method and a spectral collocation method at the Chebyshev points of the second kind (±1 and zeros of Uk) for the two-point boundary value problem. Derivative superconvergence points are identified as the Chebyshev points of the first kind (Zeros of Tk). Super-geometric convergent rate is established for a special class of solutions.


Chebyshev polynomials Collocation Spectral method Superconvergence Petrov–Galerkin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aisworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardi, C., Maday, Y.: Spectral Methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 5, pp. 209–485. North-Holland, Amsterdam (1997) Google Scholar
  3. 3.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) MATHGoogle Scholar
  4. 4.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1998) Google Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006) MATHGoogle Scholar
  6. 6.
    Clenshaw, C.W., Curtis, A.R.: A method of numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Boston (1984) MATHGoogle Scholar
  8. 8.
    Gottlieb, D., Orszag, T.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977) MATHGoogle Scholar
  9. 9.
    Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge University Press, London (2007) MATHGoogle Scholar
  10. 10.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, New York (1999) MATHGoogle Scholar
  11. 11.
    Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton (2003) MATHGoogle Scholar
  12. 12.
    Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002) MATHGoogle Scholar
  13. 13.
    Phillips, G.M.: Interpolation and Approximation by Polynomials. Springer, New York (2003) MATHGoogle Scholar
  14. 14.
    Shen, J.: A new dual-Petrov–Galerkin method for third and higher odd-order differential equations: application to the KDV equation. SIAM J. Numer. Anal. 41(5), 1595–1619 (2003) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006) Google Scholar
  16. 16.
    Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000) MATHGoogle Scholar
  17. 17.
    Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Review (2007, to appear) Google Scholar
  18. 18.
    Zhang, Z.: Superconvergence of spectral collocation and p-version methods in one dimensional problems. Math. Comp. 74, 1621–1636 (2005) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceHunan Normal UniversityChangshaChina
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations