Journal of Scientific Computing

, Volume 34, Issue 1, pp 1–25

Mesh Redistribution Strategies and Finite Element Schemes for Hyperbolic Conservation Laws

Article

Abstract

In this work we consider a new class of Relaxation Finite Element schemes for hyperbolic conservation laws, with more stable behavior on the limit area of the relaxation parameter. Combining this scheme with an efficient adapted spatial redistribution process considered also in this work, we form a robust scheme of controllable resolution. The results on a number of test problems show that this scheme can produce entropic-approximations of high resolution, even on the limit of the relaxation parameter where the scheme lacks of the relaxation mechanism. Thus we experimentally conclude that the proposed spatial redistribution process, has by its own interesting stabilization properties for computational solutions of conservation law problems.

Keywords

Finite element methods Relaxation model Adaptive mesh redistribution Hyperbolic conservation laws 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvanitis, C., Katsaounis, T., Makridakis, C.: Adaptive finite element relaxation schemes for hyperbolic conservation laws. Math. Model. Numer. Anal. 35, 17–33 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arvanitis, C., Makridakis, C., Tzavaras, A.: Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws. SIAM J. Numer. Anal. 42, 1357–1393 (2004) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Azarenok, B.N., Ivanenko, S.A., Tang, T.: Adaptive mesh redistribution method based on Godunov’s scheme. Commun. Math. Sci. 1, 152–179 (2003) MATHMathSciNetGoogle Scholar
  4. 4.
    Babuška, I.: The adaptive finite element method. TICAM Forum Notes no. 7, University of Texas, Austin (1997) Google Scholar
  5. 5.
    Babuška, I., Gui, W.: Basic principles of feedback and adaptive approaches in the finite element method. Comput. Methods Appl. Mech. Eng. 55, 27–42 (1986) CrossRefGoogle Scholar
  6. 6.
    Beckett, G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Billingsley, P.: Probability and Measure, 2nd edn. Wiley, New York (1992) Google Scholar
  8. 8.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2002) MATHGoogle Scholar
  9. 9.
    Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E.: In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697. Springer, Berlin (1998) CrossRefGoogle Scholar
  11. 11.
    Fazio, R., LeVêque, R.J.: Moving-Mesh methods for one-dimensional hyperbolic problems using CLAWPACK. Comput. Math. Appl. 45, 273–298 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gosse, L., Makridakis, C.: Two a posteriori error estimates for one dimensional scalar conservation laws. SIAM J. Numer. Anal. 38, 964–988 (2000) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Harten, S., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 17–33 (1983) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hou, T.Y., Lax, P.D.: Dispersive approximations in fluid dynamics. Commun. Pure Appl. Math. 44, 1–40 (1991) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hyman, J.M., Li, S., Petzold, L.R.: An adaptive moving mesh method with static rezoning for partial differential equations. Comput. Math. Appl. 46, 1511–1524 (2003) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jaffré, J., Johnson, C., Szepessy, A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5, 367–386 (1995) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jin, S., Xin, Z.: The relaxing schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–277 (1995) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Johnson, C., Szepessy, A.: On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput. 49, 427–444 (1987) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    LeVêque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  20. 20.
    Li, R., Tang, T., Zhang, P.: Moving Mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Li, S., Petzold, L.: Moving Mesh methods with upwind schemes for time dependent PDEs. J. Comput. Phys. 131, 368–377 (1997) MATHCrossRefGoogle Scholar
  22. 22.
    Li, S., Petzold, L., Ren, Y.: Stability of moving Mesh systems of partial differential equations. SIAM J. Sci. Comput. 20, 719–738 (1998) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lipnikov, K., Shashkov, M.: The error-minimization-based strategy for moving Mesh methods. Commun. Comput. Phys. 1, 53–81 (2006) Google Scholar
  24. 24.
    Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9, 1073–1084 (1988) MATHCrossRefGoogle Scholar
  25. 25.
    Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Stockie, J.M., Mackenzie, J.A., Russell, R.D.: A Moving mesh method for one-dimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 22, 1791–1813 (2001) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tan, Z., Zhang, Z., Huang, Y., Tang, T.: Moving mesh methods with locally varying time steps. J. Comput. Phys. 35, 17–33 (2004) MathSciNetGoogle Scholar
  28. 28.
    Tang, H.: Solution of the shallow-water equations using an adaptive moving mesh method. Int. J. Numer. Methods Fluids 44, 789–810 (2004) MATHCrossRefGoogle Scholar
  29. 29.
    Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tzavaras, A.: Viscosity and relaxation approximation for hyperbolic systems of conservation laws. In: Lecture notes in Computational Science and Engineering, vol. 5, pp. 73–122. Springer, New York (1998) Google Scholar
  31. 31.
    Zhang, Z.: Moving mesh methods for convection-dominated equations and nonlinear conservation problems. Ph.D. Thesis, Hong Kong Baptist University (2003) Google Scholar
  32. 32.
    Zhang, Z.: Moving mesh method with conservative interpolation based on L 2-projection. Commun. Comput. Phys. 1, 930–944 (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CyprusNicosia-CyprusGreece
  2. 2.Institute of Applied and Computational MathematicsFORTHCreteGreece

Personalised recommendations