Journal of Scientific Computing

, Volume 33, Issue 1, pp 47–74 | Cite as

Dispersion and Dissipation Error in High-Order Runge-Kutta Discontinuous Galerkin Discretisations of the Maxwell Equations

  • D. Sármány
  • M. A. Botchev
  • J. J. W. van der Vegt
Open Access
Article

Abstract

Different time-stepping methods for a nodal high-order discontinuous Galerkin discretisation of the Maxwell equations are discussed. A comparison between the most popular choices of Runge-Kutta (RK) methods is made from the point of view of accuracy and computational work. By choosing the strong-stability-preserving Runge-Kutta (SSP-RK) time-integration method of order consistent with the polynomial order of the spatial discretisation, better accuracy can be attained compared with fixed-order schemes. Moreover, this comes without a significant increase in the computational work. A numerical Fourier analysis is performed for this Runge-Kutta discontinuous Galerkin (RKDG) discretisation to gain insight into the dispersion and dissipation properties of the fully discrete scheme. The analysis is carried out on both the one-dimensional and the two-dimensional fully discrete schemes and, in the latter case, on uniform as well as on non-uniform meshes. It also provides practical information on the convergence of the dissipation and dispersion error up to polynomial order 10 for the one-dimensional fully discrete scheme.

Keywords

High-order nodal discontinuous Galerkin methods Maxwell equations Numerical dispersion and dissipation Strong-stability-preserving Runge-Kutta methods 

References

  1. 1.
    Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004) MATHCrossRefGoogle Scholar
  2. 2.
    Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006) MATHCrossRefGoogle Scholar
  3. 3.
    Bossavit, A.: A rationale for ‘edge-elements’ in 3-D fields computations. IEEE Trans. Mag. 24(1), 74–79 (1988) CrossRefGoogle Scholar
  4. 4.
    Bossavit, A.: Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’. IEEE Trans. Mag. 26(2), 702–705 (1990) CrossRefGoogle Scholar
  5. 5.
    Carpenter, M.H., Kennedy, C.A.: Fourth order 2N-storage Runge-Kutta scheme. NASA-TM-109112, NASA Langley Research Center, VA (1994) Google Scholar
  6. 6.
    Chen, M.-H., Cockburn, B., Reitich, F.: High-order RKDG methods for computational electromagnetics. J. Sci. Comput. 22/23, 205–226 (2005) CrossRefGoogle Scholar
  7. 7.
    Chen, Q., Babuška, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128(3–4), 405–417 (1995) MATHCrossRefGoogle Scholar
  8. 8.
    Chen, Q., Babuška, I.: The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput. Methods Appl. Mech. Eng. 137(1), 89–94 (1996) MATHCrossRefGoogle Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588–610 (2004) MATHCrossRefGoogle Scholar
  11. 11.
    Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, Newport, RI, 1999. Lecture Notes in Comput. Sci. Eng., vol. 11, pp. 3–50. Springer, Berlin (2000) Google Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996) MATHGoogle Scholar
  13. 13.
    Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998) MATHCrossRefGoogle Scholar
  14. 14.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) MATHCrossRefGoogle Scholar
  15. 15.
    Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35(2), 655–676 (1998) MATHCrossRefGoogle Scholar
  16. 16.
    Hesthaven, J.S.: High-order accurate methods in time-domain computational electromagnetics. A review. Adv. Imaging Electron Phys. 127(1), 59–123 (2003) Google Scholar
  17. 17.
    Hesthaven, J.S., Teng, C.H.: Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21(6), 2352–2380 (2000) MATHCrossRefGoogle Scholar
  18. 18.
    Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002) MATHCrossRefGoogle Scholar
  19. 19.
    Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. Roy Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 493–524 (2004) MATHCrossRefGoogle Scholar
  20. 20.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002) MATHCrossRefGoogle Scholar
  21. 21.
    Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42(1), 434–459 (2004) MATHCrossRefGoogle Scholar
  22. 22.
    Hu, F.Q., Atkins, H.L.: Eigensolution analysis of the discontinuous Galerkin method with nonuniform grids. I. One space dimension. J. Comput. Phys. 182(2), 516–545 (2002) MATHCrossRefGoogle Scholar
  23. 23.
    Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999) MATHCrossRefGoogle Scholar
  24. 24.
    Jin, J.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley-Interscience, New York (2002) MATHGoogle Scholar
  25. 25.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005) MATHGoogle Scholar
  26. 26.
    Mohammadian, A.H., Shankar, V., Hall, W.F.: Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure. Comput. Phys. Commun. 68, 175–196 (1991) CrossRefGoogle Scholar
  27. 27.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003) MATHGoogle Scholar
  28. 28.
    Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22/23, 443–477 (2005) CrossRefGoogle Scholar
  29. 29.
    Nédélec, J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50(1), 57–81 (1986) MATHCrossRefGoogle Scholar
  30. 30.
    Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72(243), 1179–1214 (2003) MATHCrossRefGoogle Scholar
  31. 31.
    Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191(41–42), 4675–4697 (2002) MATHCrossRefGoogle Scholar
  32. 32.
    Sherwin, S.: Dispersion analysis of the continuous and discontinuous Galerkin formulations. In: Discontinuous Galerkin Methods, Newport, RI, 1999. Lecture Notes in Comput. Sci. Eng., vol. 11, pp. 425–431. Springer, Berlin (2000) Google Scholar
  33. 33.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House Inc., Boston (2000) MATHGoogle Scholar
  34. 34.
    Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38(5), 1707–1720 (2000) MATHCrossRefGoogle Scholar
  35. 35.
    Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3205–3223 (2006) CrossRefGoogle Scholar
  36. 36.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980) MATHCrossRefGoogle Scholar
  37. 37.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Sármány
    • 1
  • M. A. Botchev
    • 1
  • J. J. W. van der Vegt
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteAE EnschedeNetherlands

Personalised recommendations