Journal of Scientific Computing

, Volume 32, Issue 1, pp 109–145 | Cite as

Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions

  • Peter Diener
  • Ernst Nils Dorband
  • Erik Schnetter
  • Manuel TiglioEmail author

We construct optimized high-order finite differencing operators which satisfy summation by parts. Since these operators are not uniquely defined, we consider several optimization criteria: minimizing the bandwidth, the truncation error on the boundary points, the spectral radius, or a combination of these. We examine in detail a set of operators that are up to tenth order accurate in the interior, and we surprisingly find that a combination of these optimizations can improve the operators’ spectral radius and accuracy by orders of magnitude in certain cases. We also construct high-order dissipation operators that are compatible with these new finite difference operators and which are semi-definite with respect to the appropriate summation by parts scalar product. We test the stability and accuracy of these new difference and dissipation operators by evolving a three-dimensional scalar wave equation on a spherical domain consisting of seven blocks, each discretized with a structured grid, and connected through penalty boundary conditions. In particular, we find that the constructed dissipation operators are effective in suppressing instabilities that are sometimes otherwise present in the restricted full norm case.


High order finite differencing numerical stability multi-block evolutions artificial dissipation accuracy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreiss H.O., Scherer G., (1974). Finite element and finite difference methods for hyperbolic partial differential equations. In: Boor C.D. (eds). Mathematical Aspects of Finite Elements in Partial Differential Equations. Academica Press, New YorkGoogle Scholar
  2. 2.
    Kreiss, H. O., and Scherer, G. (1977). Tech. Rep., Dept. of Scientific Computing, Uppsala University Sweden.Google Scholar
  3. 3.
    Olsson P. (1995). Summation by Parts, Projections, and Stability I. Math. Comp. 64: 1035zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Olsson P. (1995). Supplement to “Summation by parts, projections, and stability, I”. Math. Comp. 64: S23CrossRefGoogle Scholar
  5. 5.
    Olsson P. (1995). Summation by Parts, Projections, and Stability II. Math. Comp. 64: 1473zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carpenter M., Gottlieb D., Abarbanel S. (1994). Time-Stable boundary conditions for finite-difference schemes solving hyperbolic systems. Methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gustafsson B. (1998). On the implementation of boundary conditions for the method of lines. BIT 38, 293zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mattsson K. (2003). Boundary procedures for summation by parts operators. J. Sci. Comput. 18: 133zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Strand, B. (1996). Ph.D. thesis, Uppsala University, Department of Scientific Computing, Uppsala University. Uppsala, Sweden.Google Scholar
  10. 10.
    Carpenter M., Nordström J., Gottlieb D. (1999). A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy. J. Comput. Phys. 148, 341zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nordström J., Carpenter M. (2001). High-order finite difference methods, multidimensional linear problems and curvilinear coordinates. J. Comput. Phys. 173, 149zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Reula, O. (1998). Living Rev. Rel. 1, 3. URL lrr-1998-3/index.html.Google Scholar
  13. 13.
    Rauch J. (1985). Symmetric positive systems with boundary characteristics of constant multiplicity. Trans. Am. Math. Soc. 291, 167zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Secchi P. (1996). The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. Differential Integral Equations 9, 671zbMATHMathSciNetGoogle Scholar
  15. 15.
    Secchi P. (1996). Well-posedness of characteristic symmetric hyperbolic systems. Arch. Rat. Mech. Anal. 134, 155zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lehner, L., Reula, O., and Tiglio, M. (2005). Multi-block simulations in general relativity: high order discretizations, numerical stability, and applications. Class. Quantum Grav. 22 gr-qc/0507004.Google Scholar
  17. 17.
    Strand B. (1994). Summation by parts for finite differencing approximations for d/dx. J. Comput. Phys. 110, 47zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Svärd M., Mattsson K., Nordström J. (2005). Steady State Computations Using Summation by Parts Operators. J. Sci. Comput. 24, 79zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mattsson K., Svärd M., Nordström J. (2004). Stable and accurate artificial dissipation. J. Sci. Comput. 21, 57zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Friedrich, H. (2002). Conformal Einstein evolution. Lect. Notes Phys. 604, 1, gr-qc/0209018.Google Scholar
  21. 21.
    Tadmor, E. (1994). Spectral methods for hyperbolic problems. In Lecture notes delivered at Ecole des Ondes, "Méthodes numériques d’ordre élevé pour les ondes en régime transitoire", INRIA–Rocquencourt January 24-28. URL Scholar
  22. 22.
    Svärd M. (2004). On coordinate transformations for summation-by-parts operators. J. Sci. Comput. 20, 1CrossRefMathSciNetGoogle Scholar
  23. 23.
    Zink, B., Diener, P., Pazos, E., and Tiglio, M. (2006). Cauchy-perturbative matching reexamined: Tests in spherical symmetry. Phys. Rev. D 73, 084011, gr-gc/0511163.Google Scholar
  24. 24.
    Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., and Shalf, J. (2003). The cactus framework and toolkit: Design and applications. In Vector and Parallel Processing – VECPAR’2002, 5th International Conference, Lecture Notes in Computer Science, Springer, Berlin. URL Scholar
  25. 25.
    Cactus Computational Toolkit home page, URL Scholar
  26. 26.
    Schnetter E., Hawley S.H., Hawke I. (2004). Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Grav. 21: 1465, qc/0310042zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mesh Refinement with Carpet, URL Scholar
  28. 28.
    Schnetter E., Diener P., Dorband N., Tiglio M. (2006). A multi-block infrastructure for three-dimensional time-dependent numerical relativity. Class. Quantum Grav. 23, S 553 gr-qc/0602104CrossRefMathSciNetGoogle Scholar
  29. 29.
    LAPACK: Linear Algebra Package, URL Scholar
  30. 30.
    BLAS: Basic Linear Algebra Subroutines, URL Scholar
  31. 31.
    Netlib Repository, URL Scholar
  32. 32.
    Burns, G., Daoud, R., and Vaigl, J. (1994). LAM: An Open Cluster Environment for MPI. In Proceedings of Supercomputing Symposium, pp. 379–386, URL Scholar
  33. 33.
    Squyres, J. M., and Lumsdaine, A. (2003). A Component Architecture for LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group Meeting (Springer-Verlag, Venice, Italy, 2003), no. 2840 in Lecture Notes in Computer Science, pp. 379–387.Google Scholar
  34. 34.
    LAM: LAM/MPI Parallel Computing, URL Scholar
  35. 35.
    Gropp W., Lusk E., Doss N., Skjellum A. (1996). A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22, 789zbMATHCrossRefGoogle Scholar
  36. 36.
    Gropp, W. D., and Lusk, E. (1996). User’s Guide for mpich, a Portable Implementation of MPI, Mathematics and Computer Science Division, Argonne National Laboratory, ANL-96/6.Google Scholar
  37. 37.
    MPICH: ANL/MSU MPI implementation, URL mpich/.Google Scholar
  38. 38.
    MPI: Message Passing Interface Forum, URL Scholar
  39. 39.
    Sonderforschungsbereich/Transregio 7 “Gravitational Wave Astronomy”, URL http://www.tpi. Scholar
  40. 40.
    CCT Numerical Relativity, URL Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Peter Diener
    • 1
    • 2
  • Ernst Nils Dorband
    • 1
    • 2
  • Erik Schnetter
    • 2
    • 3
  • Manuel Tiglio
    • 1
    • 2
    Email author
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  2. 2.Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA
  3. 3.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations