Journal of Scientific Computing

, Volume 31, Issue 3, pp 347–389

An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions

  • Christophe Berthon
  • Pierre Charrier
  • Bruno Dubroca

The M1 radiative transfer model is considered in the present work in order to simulate the radiative fields and their interactions with the matter. The model is governed by an hyperbolic system of conservation laws supplemented by relaxation source terms. Several difficulties arise when approximating the solutions of the model; namely the positiveness of the energy, the flux limitation and and the limit diffusion behavior have to be satisfied. An HLLC scheme is exhibited and it is shown to satisfy all the required properties. A particular attention is payed concerning the approximate extreme waves. These approximations are crucial to obtain an accurate scheme. The extension to the full 2D problem is proposed. It satisfies, once again, all the expected properties. Numerical experiments are proposed. They show that the considered scheme is actually less diffusive than the currently used numerical methods.


Radiative transfer M1 model Asymptotic preserving HLLC scheme Positiveness Flux limitation 

Ams Subject Classifications

Classification AMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audit, E., Charrier, P., Chièze, J.-P., and Dubroca, B. (2002). A radiation hydrodynamics scheme valid from the transport to the diffusion limit, preprint astro-ph 0206281.Google Scholar
  2. 2.
    Batten P., Clarke N., Lambert C., Causon D.M. (1997). On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18 (6): 1553–1570MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berthon, C. Numerical approximations of the 10-moment Gaussian closure. Math. Comp. Posted on June 6, 2006, PII S 0025–5718(06)01860-6 (to appear in print).Google Scholar
  4. 4.
    Berthon, C., Charrier, P., and Dubroca, B. An asymptotic preserving relaxation scheme for a moment model of the radiative transfer, C. R. Acad. Sci. Paris, Ser. I, submitted.Google Scholar
  5. 5.
    Bouchut, F. (2004). Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources. Frontiers in Mathematics series, Birkhäuser.Google Scholar
  6. 6.
    Buet, C., and Cordier, S. (2004). Asymptotic Preserving Scheme and Numerical Methods for Radiative Hydrodynamic Models. 951–956 C. R. Acad. Sci. Paris, Tome 338, Série I.Google Scholar
  7. 7.
    Buet C., Després B. (2004) Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectrosc. Radiat. Transf. 85 (3–4): 385–418CrossRefGoogle Scholar
  8. 8.
    Buet C., Després B. (2006). Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys. 215, 717–740MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Charrier, P., Dubroca, B., Duffa G., and Turpault, R. (2003). Multigroup model for flows during atmospheric hypersonic re-entry. Proceedings of International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, pp. 103–110. Lisbonne, Portugal.Google Scholar
  10. 10.
    Dubroca, B., Feugeas, J.-L. (1999). Hiérarchie de Modéles Aux Moments Pour le Transfert Radiatif. Série I. pp. 915–920. C. R. Acad. Sci. Paris, Tome 329.Google Scholar
  11. 11.
    Gentile N.A. (2001). Implicit Monte-carlo diffusion-an acceleration method for Monte Carlo time-dependent radiative transfer simulations. J. Comput. Phys. 172, 543–571MATHCrossRefGoogle Scholar
  12. 12.
    Godlewsky, E., and Raviart, P.A. (1995). Hyperbolic Systems of Conservations Laws, Applied Mathematical Sciences, Vol 118, Springer Berlin.Google Scholar
  13. 13.
    Gosse, L., and Toscani, G. (2002). Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. pp. 337–342. C. R. Acad. Sci. Paris, tome 334, Série I.Google Scholar
  14. 14.
    Harten A., Lax P.D., Van Leer B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1): 35–61MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ingram D.M., Causon D.M., Mingham C.G. (2003). Developments in Cartesian cut cell methods. Math. Comput. Simulat. 61, 561–572MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jin S., Xin Z. (1995). The relaxation scheme for systems of conservation laws in arbitrary space dimension. Comm. Pure Appl. Math. 45, 235–276CrossRefMathSciNetGoogle Scholar
  17. 17.
    Levermore C.D. (1996). Moment closure hierarchies for kinetic theory. J. Stati. Phys. 83, 1021–1065MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mihalas D., Mihalas G.W. (1984). Foundation of Radiation Hydrodynamics. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Pomraning G.C. (1973). The Equations of Radiation Hydrodynamics, Sciences Application. Pergamon Press, OxfordGoogle Scholar
  20. 20.
    Ripoll J.-F. (2004). An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows. J. Quant. Spectrosc. Radiat. Trans. 83(3–4): 493–517CrossRefGoogle Scholar
  21. 21.
    Ripoll J.-F., Dubroca B., Audit E. (2002). A factored operator method for solving coupled radiation-hydrodynamics models. Trans. Theory. Stat. Phys. 31, 531–557MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Toro E.F. (1999). Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin.MATHGoogle Scholar
  23. 23.
    Toro E.F., Spruce M., Spear W. (1994). Restoration of the contact surface in the HLL Riemann solver. Shock waves, 4, 25–34MATHCrossRefGoogle Scholar
  24. 24.
    Turpault, R. (2002). Numerical Solution of Radiative Transfer Equation with Finite Volumes. Proceedings of Finite Volume for Complex Applications III, pp. 695–702, France.Google Scholar
  25. 25.
    Turpault R. (2005). A consistent multigroup model for radiative transfer and its underlying mean opacity. J. Quant. Spectrosc. Radiat. Transfer 94, 357–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christophe Berthon
    • 1
    • 2
  • Pierre Charrier
    • 1
  • Bruno Dubroca
    • 1
    • 3
  1. 1.MAB, UMR 5466, LRC M03Université Bordeaux ITalenceFrance
  2. 2.INRIA Futurs, projet ScAlApplix, Domaine de Voluceau-RocquencourtLe Chesnay CedexFrance
  3. 3.CELIA, Université Bordeaux ITalenceFrance

Personalised recommendations