Journal of Scientific Computing

, Volume 31, Issue 3, pp 307–345 | Cite as

On The Eigenvalues of the Spectral Second Order Differentiation Operator and Application to the Boundary Observability of the Wave Equation

  • T. Z. Boulmezaoud
  • J. M. Urquiza


The behaviour of the eigenvalues of the spectral second-order differentiation operator is studied and the results are used to investigate the boundary observability of the one dimensional wave equation approximated with a spectral Galerkin method. New explicit estimates of the discrete eigenvalues are given. These estimates improve the previous results on the subject especially for the portion of eigenvalues converging exponentially to those of the continuous problem. Although the boundary observability property of the discretized wave equation is not uniform with respect to the discretization parameter, we show that a uniform observability estimate can be obtained by filtering out the highest eigenmodes.


Spectral methods differentiation matrix eigenvalues Lommel polynomials wave equation observability filtering 

2000 Mathematics Subject Classification

65N35 65D05 65F15 93B07 93B60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks, H. T., Ito K., and Wang, C. (1991). Exponentially stable approximations of weakly damped wave equations. In Desch, F. et al. (ed.), Estimation and Control of Distributed Parameter Systems (Vorau, 1990), Int. Series Num. Math. Vol. 100, Birkhäuser, Basel, pp. 1–33.Google Scholar
  2. 2.
    Ben Belgacem, F. Remarques sur les valeurs propres de l’opérateur de Laplace avec différentes conditions aux limites approché par méthode spectrale. Comptes Rendus de l’Académies des Sciences, Série I, T. 321, 783–790.Google Scholar
  3. 3.
    Bernardi, C., and Maday, Y. (1997). Spectral methods. In Handbook of Numerical Analysis, Volume V. Techniques of Scientific Computing. (Part 2), Ciarlet, P. G. and Lions, L. L. (eds.), North-Holland and Asterdam.Google Scholar
  4. 4.
    Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. (1988). Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin, New-YorkzbMATHGoogle Scholar
  5. 5.
    Gottlieb D., Lustman L. (1983). The spectrum of the chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20(5):909–921zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gottlieb D., Orszag S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia PAzbMATHGoogle Scholar
  7. 7.
    Infante J.A., Zuazua E. (1999). Boundary observability for the space semi-discretizations of the 1-d wave equation. Math. Modell. Numer. Anal. 33(2):407–438zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ingham A.E. (1936). Some trigonometrical inequalities with applications to the theory of series. Mathe. Zeitschrift 41:367–379zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Krabs, W. (1992). On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, Vol. 173. Springer, Berlin.Google Scholar
  10. 10.
    León, L., and Zuazua, E. (2002). Boundary Controllability of the Finite-Difference Space Semi-Discretizations of the Beam Equation. ESAIM:COCV, Special volume dedicated to the memory J. L. Lions, Tome 2, pp. 827–862.Google Scholar
  11. 11.
    Lions, J.-L. (1988). Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, Masson, RMA8, Paris.Google Scholar
  12. 12.
    Qu C.K., Wong R. (1999). “Best possible” upper and lower bounds for the zeros of the Bessel function J ν(x). Trans. Am. Math. Soci. 351(7):2833–2859zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shen J. (1994). Efficient spectral-Galerkin method I. Direct solvers for second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15:1489–1505zbMATHGoogle Scholar
  14. 14.
    Sontag E.D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New YorkGoogle Scholar
  15. 15.
    Tcheugoué Tébou L.R., and Zuazua, E. (2004). Uniform boundary stabilization of the finite difference space discretization of the 1-d wave. preprint.Google Scholar
  16. 16.
    Vandeven H. (1990). On the eigenvalues of second order pseudo-spectral differentiation operators. Comput. Methods Appl. Mech. Eng. 80:313–318zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Watson G.N. (1980). A Treatrise on the Theory of Bessel Functions. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Weideman J.A.C., Trefethen L.N. (1988). The eigenvalues of second-order spectral matrices. differentiation matrices. SIAM J. Numer. Anal. 25(6):1279–1298zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Welfert B.D. (1994). On the eigenvalues of second order pseudo-spectral differentiation operators. Comput. Methods Appl. Mech. Eng. 116:281–292zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de VersaillesUniversité de Versailles SQYVersaillesFrance
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréal (Québec)Canada

Personalised recommendations