Journal of Scientific Computing

, Volume 30, Issue 3, pp 493–531 | Cite as

Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping

  • Siegfried MüllerEmail author
  • Youssef Stiriba


In recent years the concept of fully adaptive multiscale finite volume schemes for conservation laws has been developed and analytically investigated. Here the grid adaptation is performed by means of a multiscale analysis. So far, all cells are evolved in time using the same time step size. In the present work this concept is extended incorporating locally varying time stepping. A general strategy is presented for explicit as well as implicit time discretization. The efficiency and the accuracy of the proposed concept is verified numerically.


Multiscale techniques local grid refinement locally varying time stepping finite volume schemes conservation laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abgrall R. (1997). Multiresolution analysis on unstructured meshes: applications to CFD. In: Chetverushkin B. et al. (eds) Experimentation, Modelling and Computation in Flow, Turbulence and Combustion. Wiley, New YorkGoogle Scholar
  2. 2.
    Andreae S., Ballmann J., Müller S. (2005). Wave processes at interfaces. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 1–26CrossRefGoogle Scholar
  3. 3.
    Andreae S., Ballmann J., Müller S., Voß A. (2003). Dynamics of collapsing bubbles near walls. In: Hou T., Tadmor E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer Verlag, Berlin, pp. 265–272Google Scholar
  4. 4.
    Arandiga F., Donat R., Harten A. (1998). Multiresolution based on weighted averages of the hat function I: linear reconstruction techniques. SIAM J. Numer. Anal. 36(1):160–203zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arandiga F., Donat R., Harten A. (1999). Multiresolution based on weighted averages of the hat function II: non-linear reconstruction techniques. SIAM J. Sci. Comput. 20(3):1053–1093zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bell J., Berger M., Saltzman J., Welcome M. (1994). Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15(1):127–138zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Berger M. (1985). Stability of interfaces with mesh refinement. Math. Comp. 45:301–318zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Berger M. (1987). On conservation at grid interfaces. SIAM J. Numer. Anal. 24:967–984zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Berger M., Colella P. (1989). Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 82:64–84zbMATHCrossRefGoogle Scholar
  10. 10.
    Berger M., and LeVeque R. (1998). Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6):2298–2316zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Berger M., and Oliger J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys. 53:484–512zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bihari B., and Harten A. (1995). Application of generalized wavelets: An adaptive multiresolution scheme. J. Comp. Appl. Math. 61:275–321zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bihari B., and Harten A. (1997). Multiresolution schemes for the numerical solution of 2–D conservation laws I. SIAM J. Sci. Comput. 18(2):315–354zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bihari B., Ota D., Liu Z., Ramakrishnan S. (2002). The multiresolution method on general unstructured meshes. AIAA J. 40(7):1323–1330CrossRefGoogle Scholar
  15. 15.
    Bramkamp F., Gottschlich-Müller B., Hesse M., Lamby P., Müller S., Ballmann J., Brakhage K.H., Dahmen W. (2003). H-adaptive multiscale schemes for the compressible Navier–Stokes equations – polyhedral discretization, data compression and mesh generation. In: Ballmann J. (eds) Flow Modulation and Fluid-Structure-Interaction at Airplane Wings. Numerical Notes on Fluid Mechanics, Vol. 84, Springer, Berlin, pp. 125–204Google Scholar
  16. 16.
    Bramkamp F., Lamby P., and Müller S. (2004). An adaptive multiscale finite volume solver for unsteady an steady state flow computations. J. Comp. Phys. 197(2):460–490zbMATHCrossRefGoogle Scholar
  17. 17.
    Carnicer J., Dahmen W., Peña J. (1996). Local decomposition of refinable spaces and wavelets. Appl. Comput. Harmon. Anal. 3:127–153zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chiavassa G., Donat R. (2001). Point value multiresolution for 2D compressible flows. SIAM J. Sci. Comput. 23(3):805–823zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chiavassa G., Donat, R., and Marquina, A. (2002). Fine–mesh numerical simulations for 2D riemann problems with a multilevel scheme. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 247–256Google Scholar
  20. 20.
    Cohen A., Dyn N., Kaber S., Postel M. (2000). Multiresolution finite volume schemes on triangles. J. Comp. Phys. 161:264–286zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Cohen A., Kaber S., Müller S., Postel M. (2003). Fully Adaptive Multiresolution Finite Volume Schemes for Conservation Laws. Math. Comp. 72(241):183–225zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Cohen, A., Kaber, S., and Postel, M. (2002). Multiresolution analysis on triangles: application to gas dynamics. In Warnecke, G., Freistühler, H. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 257–266.Google Scholar
  23. 23.
    Dahmen W., Gottschlich–Müller B., Müller S. (2000). Multiresolution schemes for conservation laws. Numer. Math. 88(3):399–443CrossRefGoogle Scholar
  24. 24.
    Dahmen W., Müller S., Voß A. (2005). Riemann problem for the Euler equations with non-convex equation of state including phase transitions. In: Warnecke G. (eds) Analysis and Numerics for Conservation Laws. Springer, Berlin, pp. 137–162CrossRefGoogle Scholar
  25. 25.
    Dawson C., Kirby R. (2001). High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22(6):2256–2281zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Engquist B., Osher S. (1981). One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36:321–352zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gottschlich–Müller, B., and Müller, S. (1999). Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In Fey, M., and Jeltsch R. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, pp. 385–394.Google Scholar
  28. 28.
    Harten A. (1995). Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48(12):1305–1342zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Harten A. (1996). Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3):1205–1256zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non–oscillatory schemes III. J. Comp. Phys. 71:231–303zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Houston P., Mackenzie J., Süli E., Warnecke G. (1999). A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math. 82:433–470zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Jameson L. (2003). AMR vs high order schemes. J. Sci. Comput. 18(1):1–24zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Kröner D., Ohlberger M. (1999). A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comp. 69(229):25–39CrossRefGoogle Scholar
  34. 34.
    Lamby, P., Massjung, R., Müller, S., and Stiriba, Y. (2005). Inviscid flow on moving grids with multiscale space and time adaptivity (2005). Submitted for publication in Proceedings of 6th European Conference on Numerical Methods and Advanced Mathematics, July, 18–22, Santiago de Compostela, Spain.Google Scholar
  35. 35.
    Lamby P., Müller S., Stiriba Y. (2005). Solution of shallow water equations using fully adaptive multiscale schemes. Int. J. Numer. Methods Fluids 49(4):417–437zbMATHCrossRefGoogle Scholar
  36. 36.
    Müller S. (2002). Adaptive multiresolution schemes. In: Herbin B., Kröner D. (eds) Finite Volumes for Complex Applications. Hermes Science, ParisGoogle Scholar
  37. 37.
    Müller, S. (2002). Adaptive multiscale schemes for conservation laws. Lecture Notes on Computational Science and Engineering, vol. 27, Springer, Berlin.Google Scholar
  38. 38.
    Müller, S., and Stiriba, Y. (2004). Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. IGPM–Report 238, RWTH Aachen.Google Scholar
  39. 39.
    Osher S., Sanders R. (1983). Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comp. 41:321–336zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Rault A., Chiavassa G., Donat R. (2003). Shock-vortex interactions at high Mach numbers. J. Sci. Comput. 19:347–371zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Roussel O., Schneider K., Tsigulin A., Bockhorn H. (2003). A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2):493–523zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sonar T.V., and Hannemann D.H. (1994). Dynamic adaptivity and residual control in unsteady compressible flow computation. Math. Comput. Model. 20:201–213zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Sonar T.E.S. (1998). A dual graph–norm refinement indicator for finite volume approximations of the Euler equations. Numer. Math. 78:619–658Google Scholar
  44. 44.
    Tang H., and Warnecke G. (2006). A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids. J. Comp. Math. 24(2):121–140zbMATHMathSciNetGoogle Scholar
  45. 45.
    Trompert R., and Verwer J. (1993). Analysis of the implicit Euler local uniform grid refinement method. SIAM J. Sci. Comput. 14(2):259–278zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany
  2. 2.Departament Enginyeria MecànicaUniversitat “Rovira i Virgili” - ETSEQTarragonaSpain

Personalised recommendations