Journal of Scientific Computing

, Volume 28, Issue 2–3, pp 139–165

A Mathematical Approach in the Design of Arterial Bypass Using Unsteady Stokes Equations

  • Valery Agoshkov
  • Alfio Quarteroni
  • Gianluigi Rozza
In Honor of David Gottlieb’s 60th Birthday

In this paper we present an approach for the study of Aorto-Coronaric bypass anastomoses configurations using unsteady Stokes equations. The theory of optimal control based on adjoint formulation is applied in order to optimize the shape of the zone of the incoming branch of the bypass (the toe) into the coronary according to several optimality criteria.

Keywords

Optimal control shape optimization small perturbation theory finite elements unsteady Stokes equations haemodynamics aorto-coronaric bypass anastomoses design of improved medical devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agoshkov V.I. (2003). Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problems. Institute of Numerical Mathematics, Russian Academy of Sciences, MoscowGoogle Scholar
  2. 2.
    Agoshkov, V. I., Quarteroni, A., and Rozza, G. (2005). Shape design in aorto coronaric bypass using perturbation theory. To appear in SIAM J. Numer. Anal.Google Scholar
  3. 3.
    Cole J.S., Watterson J.K., O’Reilly M.J.G. (2002). Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. Med. Eng. Phys 24:393–401PubMedCrossRefGoogle Scholar
  4. 4.
    Lions, J. L. (1971). Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag.Google Scholar
  5. 5.
    Lions, J. L., Magenes, E. (1972). Non-homogeneous Boundary Value Problems and Applications, Springer-Verlag.Google Scholar
  6. 6.
    Marchuk G.I. (1989). Methods of Numerical Mathematics. Nauka, MoscowGoogle Scholar
  7. 7.
    Prud’homme C., Rovas D., Veroy K., Maday Y., Patera A.T., and Turinici G. (2002). Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluid. Eng. 172:70–80CrossRefGoogle Scholar
  8. 8.
    Quarteroni A., and Rozza G. (2003). Optimal control and shape optimization in aorto-coronaric bypass anastomoses. M3AS Math. Mod. Meth. Appl. Sci. 13(12):1801–23MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Quarteroni A., and Formaggia L. (2004). Mathematical modelling and numerical simulation of the cardiovascular system. In: Ciarlet P.G., and Lions J.L. (eds). Modelling of Living Systems, Handbook of Numerical Analysis Series. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Quarteroni A., Tuveri M., and Veneziani A. (2000). Computational vascular fluid dynamics: problems, models and methods. Comput. Visual Sci 2:163–197MATHCrossRefGoogle Scholar
  11. 11.
    Quarteroni A., and Valli A. (1994). Numerical Approximation of Partial Differential Equations. Springer-Verlag, BerlinMATHGoogle Scholar
  12. 12.
    Quarteroni A., Sacco R., and Saleri F. (2000). Numerical Mathematics. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Tikhonov A.N., and Arsenin V.Ya. (1974). Methods for Solving Ill-posed Problems. Nauka, MoscowGoogle Scholar
  14. 14.
    Rozza G. (2005). On optimization, control and shape design of an arterial bypass. Int. J. Numer. Meth. Fluid 47(10–11): 1411–1419MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rozza, G. (2005). Real time reduced basis techniques for arterial bypass geometries. Bathe, K. J. (ed.), Computational Fluid and Solid Mechanics, Elsevier, pp. 1283–1287.Google Scholar
  16. 16.
    Vainikko G.M., Veretennikov A.Yu. (1986). Iterative Procedures in Ill-posed problems. Nauka, MoscowGoogle Scholar
  17. 17.
    Van Dyke M. (1975) Perturbation Methods in Fluid Mechanics. The Parabolic Press, StanfordMATHGoogle Scholar
  18. 18.
    Vasiliev F.P. (1981). Methods for Solving the Extremum Problems. Nauka, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Valery Agoshkov
    • 1
  • Alfio Quarteroni
    • 2
    • 3
  • Gianluigi Rozza
    • 2
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Chair of Modelling and Scientific Computing (CMCS)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.MOX, Dipartimento di Matematica “Francesco Brioschi”Politecnico di MilanoMilanoItaly

Personalised recommendations