Journal of Scientific Computing

, Volume 27, Issue 1–3, pp 137–149 | Cite as

Mesh Update Techniques for Free-Surface Flow Solvers Using Spectral Element Method



This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian–Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given


Spectral element free-surface flows ALE moving grid mesh update 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deville M.O., Fischer P.F., and Mund E.H. (2002). High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge ISBN 0-521-45309-7Google Scholar
  2. 2.
    Donea J. (1983). Arbitrary Lagrangian–Eulerian finite element methods. In: Belytschko T.B., and Hugues T.J.R (eds). Computational Methods for Transient Analysis, North Holland pp. 474–516Google Scholar
  3. 3.
    Farhat C., Geuzaine P., and Grandmont C. (2001). The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys 174:669–694CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Farhat C., and Geuzaine P. (2004). Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Comput. Meth. Appl. Mech. Engng 193:4073–4075CrossRefMathSciNetGoogle Scholar
  5. 5.
    Formaggia L., and Nobile F. (2004). Stability analysis of second-order time accurate schemes for ALE–FEM. Comput. Meth. Appl. Mech. Engng 193:4097–4116CrossRefMathSciNetGoogle Scholar
  6. 6.
    Güler I., Behr M., and Tezduyar T.E. (1999). Parallel finite element computation of free-surface flows. Comput. Mech 23:117–123CrossRefGoogle Scholar
  7. 7.
    Hirt C.W., Amsden A.A., and Cook J.L. (1974). An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys 14:227–253CrossRefGoogle Scholar
  8. 8.
    Ho L.W., and Patera A.T. (1990). A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Meth. Appl. Mech. Engng 80:355–366CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hodges B.R., and Street R.L. (1999). On simulation of turbulent nonlinear free-surface flows. J. Comput. Phys 151:425–457CrossRefADSGoogle Scholar
  10. 10.
    Johnson A.A., and Tezduyar T.E. (1994). Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Meth. Appl. Mech. Engng 119:73–94CrossRefGoogle Scholar
  11. 11.
    Karniadakis G.E., Israeli M., and Orszag S.A. (1991). High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys 97:414–443CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Lee N.S., and Bathe K.J. (1994). Error indicators and adaptive remeshing in large deformation finite element analysis. Finite Elements Anal. Design 16:99–139CrossRefMathSciNetGoogle Scholar
  13. 13.
    Maday Y., and Patera A.T. (1989). Spectral element methods for the incompressible Navier–Stokes equations. In: Noor A.K., and Oden J.T (eds). State-of-the-Art Survey on Computational Mechanics. ASME, New-York, pp. 71–142Google Scholar
  14. 14.
    Patera A.T. (1984). Spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys 54: 468–488CrossRefMATHADSGoogle Scholar
  15. 15.
    Ramaswamy B., and Kawahara M. (1987). Arbitrary Lagrangian–Eulerian finite-element method for unsteady, convective, incompressible viscous free-surface fluid-flow. Int. J. Numer. Meth. Fl 7(10):1053–1075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory of Computational EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations