Large-Eddy Simulation of the Lid-Driven Cubic Cavity Flow by the Spectral Element Method

  • Roland Bouffanais
  • Michel O. Deville
  • Paul F. Fischer
  • Emmanuel Leriche
  • Daniel Weill

This paper presents the large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method (SEM) using the dynamic model. Two spectral filtering techniques suitable for these simulations have been implemented. Numerical results for Reynolds number Re=12,000 are showing very good agreement with other experimental and DNS results found in the literature.


Spectral element spectral filter LES lid-driven cavity 


  1. 1.
    Blackburn H.M., and Schmidt S. (2003). Spectral element filtering techniques for large eddy simulation with dynamic estimation. J. Comput. Phys. 186:610–629CrossRefADSzbMATHGoogle Scholar
  2. 2.
    Boyd J.P. (1998). Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: Preserving boundary conditions and interpretation of the filter as a diffusion. J. Comput. Phys. 143:283–288zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Deville M.O., Fischer P.F., and Mund E.H. (2002). High-Order Methods for Incompressible Fluid Flow, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Germano M., Piomelli U., Moin P., and Cabot W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3:1760–1793CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Jordan S.A., and Ragab S.A. (1994). On the unsteady and turbulent characteristics of the three-dimensional shear-driven cavity flow. J. Fluids Eng.116:439–449CrossRefGoogle Scholar
  6. 6.
    Karamanos, G. S., Sherwin, S. J., and Morrison, J. F. (1999). Large eddy simulation using unstructured spectral/hp elements. In Knight, D., and Sakell, L. (eds.), Recent Advances in DNS and LES. Kluwer.Google Scholar
  7. 7.
    Karamanos G. S., and Karniadakis G. E. (2000). A spectral vanishing viscosity method for Large-Eddy simulations. J. Comput. Phys. 163:22–50CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Koseff J.R., and Street R.L. (1984). The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. J. Fluids Eng. 106:390–398CrossRefGoogle Scholar
  9. 9.
    Leriche E. (1999). Direct numerical simulation of lid-driven cavity flow by a Chebyshev spectral method. Ph. D. Thesis no. 1932, Swiss Federal Institute of Technology, LausanneGoogle Scholar
  10. 10.
    Leriche E., and Gavrilakis S. (1999). Direct numerical simulation of the flow in the lid-driven cubical cavity. Phys. Fluids 12:1363–1376CrossRefADSGoogle Scholar
  11. 11.
    Lesieur M., and Métais O. (1996). New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28:45–82CrossRefADSGoogle Scholar
  12. 12.
    Lilly D.K. (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4:633–635CrossRefADSGoogle Scholar
  13. 13.
    Maday Y., and Patera A.T. (1989). Spectral element methods for the Navier-Stokes equations. In: Noor A.K., and Oden J.T. (eds). State-of-the-Art Surveys in Computational Mechanics. ASME, New York, pp. 71–143Google Scholar
  14. 14.
    Mullen J.S., and Fischer P.F. (1999). Filtering techniques for complex geometry fluid flows. Comm. Numer. Meth. Eng. 15:9–18CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Sagaut P. (2003). Large Eddy Simulation for Incompressible Flows – An Introduction, 2nd edn. Springer, BerlinGoogle Scholar
  16. 16.
    Shankar P.N., and Desphande M.D. (2000). Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32:93–136CrossRefADSGoogle Scholar
  17. 17.
    Smagorinsky J.S. (1963). General circulation experiments with the primitive equations. Month. Weather Rev. 91:99–164ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Roland Bouffanais
    • 1
  • Michel O. Deville
    • 1
  • Paul F. Fischer
    • 2
  • Emmanuel Leriche
    • 1
  • Daniel Weill
    • 1
  1. 1.Laboratory of Computational EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.MCSArgonne National LaboratoryArgonneUSA

Personalised recommendations