Advertisement

Journal of Scientific Computing

, Volume 26, Issue 1, pp 83–110 | Cite as

Space–Time Adaptive Solution of First Order PDES

  • Lars Ferm
  • Per Lötstedt
Article

Abstract

An explicit time-stepping method is developed for adaptive solution of time-dependent partial differential equations with first order derivatives. The space is partitioned into blocks and the grid is refined and coarsened in these blocks. The equations are integrated in time by a Runge–Kutta–Fehlberg (RKF) method. The local errors in space and time are estimated and the time and space steps are determined by these estimates. The method is shown to be stable if one-sided space discretizations are used. Examples such as the wave equation, Burgers’ equation, and the Euler equations in one space dimension with discontinuous solutions illustrate the method.

Keywords

Runge–Kutta–Fehlberg method shock problems space adaptation time adaptation 

AMS subject classification

65M20 65M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckett, G., Mackenzie, J.A., Ramage, A., Sloan, D.M. 2001On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistributionJ. Comput. Phys.167372392CrossRefzbMATHGoogle Scholar
  2. 2.
    Berger, M., Colella, P. 1989Local adaptive mesh refinement for shock hydrodynamicsJ. Comput. Phys.826484CrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, M., LeVeque, R. 1998Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systemsSIAM J. Numer. Anal.3522982316CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Cao, W., Huang, W., Russell, R.D. 1999An r-adaptive finite element method based upon moving mesh PDEsJ. Comput. Phys.149221244CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Engquist, B., Osher, S. 1980Stable and entropy satisfying approximations for transonic flow calculationsMath. Comp.344575MathSciNetzbMATHGoogle Scholar
  6. 6.
    Engquist, B., Sjögreen, B. 1998The convergence of finite difference schemes in the presence of shocksSIAM J. Numer. Anal.3524642485CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Ferm, L., and Lötstedt, P. (2001). Efficiency in the adaptive solution of inviscid compressible flow problems, in Proceedings of WCNA 2000. Nonlinear Anal. 47, 3467–3478Google Scholar
  8. 8.
    Ferm, L., Lötstedt, P. 2002Adaptive error control for steady state solutions of inviscid flowSIAM J. Sci. Comput.2317771798CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Ferm, L., Lötstedt, P. 2003Anisotropic grid adaptation for Navier-Stokes’ equationsJ. Comput. Phys.1902241CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Ferm, L., Lötstedt, P. 2004Accurate and stable grid interfaces for finite volume methodsAppl. Numer. Math.49207224CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Gottlieb, S., Shu, C.-W. 1998Total variation diminishing Runge-Kutta schemesMath. Comp.677385CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Gustafsson, K. 1991Control theoretic techniques for stepsize selection in explicit Runge-Kutta methodsACM Trans. Math. Software17533554CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hairer, E., Nørsett, S.P., Wanner, G. 1993Solving Ordinary Differential Equations2Springer-VerlagBerlinzbMATHGoogle Scholar
  14. 14.
    Hörnell, K. 1999Runge-Kutta Time Step Selection for Flow ProblemsUppsala Dissertations 16, Faculty of Science and Technology, Uppsala UniversityUppsala, SwedenPhD thesisGoogle Scholar
  15. 15.
    Hörnell, K., Lötstedt, P. 2001Time step selection for shock problemsCommun. Numer. Meth. Engng17477484CrossRefzbMATHGoogle Scholar
  16. 16.
    Hornung, R.D., Trangenstein, J.A. 1997Adaptive mesh refinement and multilevel iteration for flow in porous mediaJ. Comput. Phys.136522545CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Huang, W., Russell, R.D. 1999Moving mesh strategy based on a gradient flow equation for two-dimensional problemsSIAM J. Sci. Comput.209981015MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jessee, J.P., Fiveland, W.A., Howell, L.H., Colella, P., Pember, R.B. 1998An adaptive mesh refinement algorithm for the radiative transport equationJ. Comput. Phys.139380398CrossRefzbMATHGoogle Scholar
  19. 19.
    Johnson, C., Szepessy, A. 1995Adaptive finite element methods for conservation laws based on a posteriori error estimatesComm. Pure Appl. Math.48199234MathSciNetzbMATHGoogle Scholar
  20. 20.
    Karni, S., Kurganov, A., Petrova, G. 2002A smoothness indicator for adaptive algorithms for hyperbolic systemsJ. Comput. Phys.178323341CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Keppens, R., Nool, M., Tóth, G., Goedbloed, J.P. 2003Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluationComput. Phys. Comm.153317339CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kreiss, H.-O., Lorenz, J. 1989Initial Boundary Value Problems and the Navier-Stokes EquationsAcademic PressBostonzbMATHGoogle Scholar
  23. 23.
    Leer, B. 1984On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher, and RoeSIAM J. Sci. Comput.5120zbMATHGoogle Scholar
  24. 24.
    LeVeque, R.J. 2002Finite Volume Methods for Hyperbolic ProblemsCambridge University PressCambridgezbMATHGoogle Scholar
  25. 25.
    Li, R., Liu, W.B., Ma, H.P. 2004Moving mesh method with error-estimator-based monitor and its applications to static obstacle problemJ. Sci. Comput.213155CrossRefMathSciNetGoogle Scholar
  26. 26.
    Li, R., Tang, T., Zhang, P. 2001Moving mesh methods in multiple dimensions based on harmonic mapsJ. Comput. Phys.170562588CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Liu, F., Ji, S., Liao, G. 1998An adaptive grid method and its application to steady Euler flow calculationsSIAM J. Sci. Comput.20811825CrossRefMathSciNetGoogle Scholar
  28. 28.
    Lötstedt, P., SöderbergS. Ramage, A., Hemmingsson-Frändén, L. 2002Implicit solution of hyperbolic equations with space-time adaptivityBIT42134158CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Osher, S., Solomon, F. 1982Upwind difference schemes for hyperbolic systems of conservation lawsMath. Comp.38339374MathSciNetzbMATHGoogle Scholar
  30. 30.
    Powell, K.G. 1994A tree-based adaptive scheme for solution of the equations of gas dynamics and magnetohydrodynamicsAppl. Numer. Math.14327352CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Sod, G. 1978A survey of several finite difference methods for systems of nonlinear hyperbolic conservation lawsJ. Comput. Phys.273278CrossRefMathSciNetGoogle Scholar
  32. 32.
    Söderlind, G. 2002Automatic control and adaptive time-steppingNumer. Alg.31281310zbMATHGoogle Scholar
  33. 33.
    Stockie, J.M., Mackenzie, J.A., Russell, R.D. 2001A moving mesh method for one-dimensional hyperbolic conservations lawsSIAM J. Sci. Comput.2217911813MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tang, H., Tang, T. 2003Adaptive mesh methods for one- and two-dimensional hyperbolic conservations lawsSIAM J. Numer. Anal.41487515CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Tang, T., Teng, Z.-H. 1997Viscosity methods for piecewise smooth solutions to scalar conservation lawsMath. Comp.66495526CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Vande Wouwer, A.Saucez, P.Schiesser, W.E. eds. 2001Adaptive Method of LinesChapman & HallBoca RatonzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Information Technology, Division of Scientific ComputingUppsala UniversityUppsalaSweden

Personalised recommendations