Journal of Scientific Computing

, Volume 24, Issue 1, pp 79–95 | Cite as

Steady-State Computations Using Summation-by-Parts Operators

  • Magnus SvärdEmail author
  • Ken Mattsson
  • Jan Nordström


This paper concerns energy stability on curvilinear grids and its impact on steady-state calulations. We have done computations for the Euler equations using fifth order summation-by-parts block and diagonal norm schemes. By imposing the boundary conditions weakly we obtain a fifth order energy-stable scheme. The calculations indicate the significance of energy stability in order to obtain convergence to steady state. Furthermore, the difference operators are improved such that faster convergence to steady state are obtained.


High order finite differences summation-by-parts operators convergence to steady state stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mattsson K., Svärd M., Nordström J., Carpenter M.H., (2003). Accuracy Requirements for Transient Aerodynamics. AIAA paper 2003–3689Google Scholar
  2. 2.
    Zingg, D.W. 2000Comparison of high-accuracy finite-difference methods for linear wave propagationSIAM J. Sci. Comput.22476502CrossRefGoogle Scholar
  3. 3.
    Zingg, D.W., De Rango, S., Memec, M., Pulliam, T.H. 2000Comparison of Several Spatial Discretizations for the Navier-Stokes equationsJ. Comput. Phys.160683704CrossRefGoogle Scholar
  4. 4.
    Kreiss, H.-O., Scherer, G. 1974Finite element and finite difference methods for hyperbolic partial differential equations. Mathematical Aspects of Finite Elements in Partial Differential EquationsAcademic Press IncNew YorkGoogle Scholar
  5. 5.
    Kreiss H.-O., Scherer G. (1977). On the existence of energy estimates for difference approximations for hyperbolic systems Technical report, Dept. of Scientific Computing Uppsala University.Google Scholar
  6. 6.
    Svärd, M. 2004On coordinate transformations for summation-by-parts operatorsJ. Sci. Comput.202942CrossRefGoogle Scholar
  7. 7.
    Mattsson, K., Svärd, M., Nordström, J. 2004Stable and Accurate Artificial DissipationJ. Sci. Comput.215779CrossRefMathSciNetGoogle Scholar
  8. 8.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S. 1994The stability of numerical boundary treatments for compact high-order finite-difference schemes.108272295Google Scholar
  9. 9.
    Carpenter, M.H., Nordström, J., Gottlieb, D. 1999A Stable and Conservative interface treatment of Arbitrary Spatial AccuracyJ. Comput. Phys.148341365CrossRefGoogle Scholar
  10. 10.
    Nordström, J., Carpenter, M.H. 1999Boundary and interface conditions for high order finite difference methods applied to the Euler and Navier–Stokes equationsJ. Comput. Phys.148621645CrossRefGoogle Scholar
  11. 11.
    Nordström, J., Carpenter, M.H. 2001High-order finite difference methods multidimensional linear problems and curvilinear coordinatesJ. Comput. Phys.173149174CrossRefGoogle Scholar
  12. 12.
    Strand, B. 1994Summation by parts for finite difference approximations for d/dxJ. Comput. Phys.1104667CrossRefGoogle Scholar
  13. 13.
    Zingg D.W., (1997). Aspect of linear stability amalysis for higher-order finite-difference methods. AIAA paper 1997–1939.Google Scholar
  14. 14.
    Gustafsson, B., Kreiss, H.-O., Oliger, J. 1995Time Dependent Problems and Difference MethodsWileyNew YorkGoogle Scholar
  15. 15.
    Jurgens, H.M., Zingg, D.W. 2000Numerical solution of the time-domain maxwell equation using high-accuracy finite-difference methodsSIAM J. Sci. Comput.2216751696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden
  3. 3.Division of Systems Technology, Department of Computational Physics, Department of Information TechnologyThe Swedish Defence Research Agency, Uppsala UniversityUppsalaSweden

Personalised recommendations