Advertisement

Journal of Scientific Computing

, Volume 25, Issue 1, pp 129–155 | Cite as

Implicit–Explicit Runge–Kutta Schemes and Applications to Hyperbolic Systems with Relaxation

  • Lorenzo Pareschi
  • Giovanni Russo
Article

Abstract

We consider new implicit–explicit (IMEX) Runge–Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stability-preserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge–Kutta method (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space is obtained by Weighted Essentially Non Oscillatory (WENO) reconstruction. After a description of the mathematical properties of the schemes, several applications will be presented

Keywords

Runge–Kutta methods hyperbolic systems with relaxation stiff systems high order shock capturing schemes 

AMS Subject Classification

65C20 82D25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, M., and Roe, P. L. (1998). Issues and strategies for hyperbolic problems with stiff source terms in Barriers and challenges in computational fluid dynamics, Hampton, VA, 1996, Kluwer Academic Publication, Dordrecht, pp. 139–154.Google Scholar
  2. 2.
    Ascher, U., Petzold, L. 1998Computer Methods for Ordinary Differential Equations, and Differential Algebraic EquationsSIAMPhiladelphiaGoogle Scholar
  3. 3.
    Ascher, U., Ruuth, S., Spiteri, R.J. 1997Implicit-explicit Runge–Kutta methods for time dependent partial differential equationsAppl. Numer. Math.25151167MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ascher, U., Ruuth, S., Wetton, B. 1995Implicit-explicit methods for time dependent PDE’sSIAM J. Numer. Anal.32797823MathSciNetGoogle Scholar
  5. 5.
    Aw, A., Rascle, M. 2000Resurrection of second order models of traffic flow?SIAM. J. Appl. Math.60916938MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aw, A., Klar, A., Materne, T., Rascle, M. 2002Derivation of continuum traffic flow models from microscopic follow-the-leader modelsSIAM J. Appl. Math.63259278MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caflisch, R.E., Jin, S., Russo, G. 1997Uniformly accurate schemes for hyperbolic systems with relaxationSIAM J. Numer. Anal.34246281MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, G.Q., Levermore, D., Liu, T.P. 1994Hyperbolic conservations laws with stiff relaxation terms and entropyComm. Pure Appl. Math.47787830MathSciNetGoogle Scholar
  9. 9.
    Dia, B.O., Schatzman, M. 1996Commutateur de certains semi-groupes holomorphes et applications aux directions alternéesMath. Modelling Num. Anal.30343383MathSciNetGoogle Scholar
  10. 10.
    Gottlieb, S., Shu, C.-W. 1998Total variation diminishing Runge–Kutta schemesMath. Comp.677385MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gottlieb, S., Shu, C.-W., Tadmor, E. 2001Strong-stability-preserving high order time discretization methodsSIAM Review4389112MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hairer, E. 1981Order conditions for numerical methods for partitioned ordinary differential equationsNumerische Mathematik36431445MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hairer, E., Nørsett, S.P., Wanner, G. 1987Solving Ordinary Differential Equations, Vol 1 Nonstiff problemsSpringer-VerlagNew YorkGoogle Scholar
  14. 14.
    Hairer, E., Wanner, G. 1987Solving Ordinary Differential Equations, Vol.2 Stiff and Differential-algebraic ProblemsSpringer-VerlagNew YorkGoogle Scholar
  15. 15.
    Jahnke T., Lubich C. (2000). Error bounds for exponential operator splitting. BIT 735–744Google Scholar
  16. 16.
    Jenkins, J., Richman, M. 1985Grad’s 13-moment system for a dense gas of inelastic spheresArch. Rat. Mech. Anal.87355377MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jin, S. 1995Runge–Kutta methods for hyperbolic systems with stiff relaxation termsJ. Comput. Phys.1225167MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Jin, S., Xin, Z.P. 1995The relaxation schemes for systems of conservation laws in arbitrary space dimensionsComm. Pure Appl. Math.48235276MathSciNetGoogle Scholar
  19. 19.
    Kennedy, C.A., Carpenter, M.H. 2003Additive Runge–Kutta schemes for convection-diffusion-reaction equationsAppl. Numer. Math.44139181MathSciNetCrossRefGoogle Scholar
  20. 20.
    LeVeque, R.J. 1992Numerical Methods for Conservation LawsBirkhauserVerlagBaselLectures in MathematicsGoogle Scholar
  21. 21.
    Liotta, S.F., Romano, V., Russo, G. 2000Central schemes for balance laws of relaxation typeSIAM J. Numer. Anal.3813371356MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, T.P. 1987Hyperbolic conservation laws with relaxationComm. Math. Phys.108153175MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Marquina, A., and Serna, S. (2004). Capturing Shock Waves in Inelastic Granular Gases, UCLA-CAM Report, 04–04Google Scholar
  24. 24.
    Pareschi, L. 2001Central differencing based numerical schemes for hyperbolic conservation laws with stiff relaxation termsSIAM J. Num. Anal.3913951417MATHMathSciNetGoogle Scholar
  25. 25.
    Pareschi, L., Russo, G. 2001Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. AdvTheory Comput Math.3269289MathSciNetGoogle Scholar
  26. 26.
    Pareschi, L., and Russo, G. (2003). High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation, Proceedings HYP2002, Pasadena USA, Springer, Berlin, 241–255.Google Scholar
  27. 27.
    Pareschi, L., and Russo, G. (2004). Stability analysis of implicit–explicit Runge–Kutta schemes. preprint.Google Scholar
  28. 28.
    Qiu, J., Shu, C.-W. 2002On the construction, comparison, and local characteristic decomposition for high-order central WENO schemesJ. Comput. Phys.183187209MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shu, C.-W. 1988Total variation diminishing time discretizationsSIAM J. Sci. Stat. Comput.910731084MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Shu C.-W. (2000). Essentially Non Oscillatory and Weighted Essentially Non Oscillatory Schemes for Hyperbolic Conservation Laws, in Advanced numerical approximation of nonlinear hyperbolic equations, Lecture Notes in Mathematics, 1697, 325–432.Google Scholar
  31. 31.
    Shu, C.-W., Osher, S. 1988Efficient implementation of essentially nonoscillatory shock-capturing schemesJ. Comput. Phys.77439471MathSciNetCrossRefGoogle Scholar
  32. 32.
    Spiteri, R.J., Ruuth, S.J. 2002A new class of optimal strong-stability-preserving time discretization methods. SIAMJ. Num. Anal.40469491MathSciNetGoogle Scholar
  33. 33.
    Strang, G. 1968On the construction and comparison of difference schemesSIAM J. Numer. Anal.5505517MathSciNetCrossRefGoogle Scholar
  34. 34.
    Toscani G. Kinetic and hydrodinamic models of nearly elastic granular flows. Monatsch. Math. 142(1–2):179–192Google Scholar
  35. 35.
    Whitham, G.B. 1974Linear and Nonlinear wavesWileyNew YorkGoogle Scholar
  36. 36.
    Zhong, X. 1996Additive semi-implicit Runge–Kutta methods for computing high speed nonequilibrium reactive flowsJ. Comp. Phys.1281931MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FerraraFerraraItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations