Journal of Scientific Computing

, Volume 24, Issue 2, pp 247–262

A Moving Grid Finite Element Method for the Simulation of Pattern Generation by Turing Models on Growing Domains

  • Anotida Madzvamuse
  • Philip K. Maini
  • Andrew J. Wathen


Numerical techniques for moving meshes are many and varied. In this paper we present a novel application of a moving grid finite element method applied to biological problems related to pattern formation where the mesh movement is prescribed through a specific definition to mimic the growth that is observed in nature. Through the use of a moving grid finite element technique, we present numerical computational results illustrating how period doubling behaviour occurs as the domain doubles in size.


Moving meshes moving grid finite elements reaction–diffusion systems Turing instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheson, D.J. 1990Elementary Fluid Dynamics. Oxford Applied Mathematics and Computing ScienceClarendon PressOxfordGoogle Scholar
  2. Baines, M.J. 1994Moving Finite Elements, Monographs on Numerical AnalysisClarendon PressOxfordGoogle Scholar
  3. Bard, J, Lauder, I. 1974How well does Turing’s theory of morphogenesis work?J. Theor. Biol.45501521CrossRefPubMedGoogle Scholar
  4. Barinaga, M. 1994Looking to development’s futureScience266561564Google Scholar
  5. Blom, J.F. 2000Considerations of the spring analogyInt. J. Numer. Meth Fluids.12647668CrossRefGoogle Scholar
  6. Carlson, N.N., Miller, K. 1998Design and application of a gradient-weighted moving finite element code I: in one dimensionSIAM J. Sci. Comput.19728765CrossRefGoogle Scholar
  7. Carlson, N.N., Miller, K. 1998Design and application of a gradient-weighted moving finite element code II: in two dimensionsSIAM J. Sci. Comput.19766798CrossRefGoogle Scholar
  8. Castets, V, Dulos, E, Boissonade, J, De Kepper, P. 1990Experimental evidence of a sustained Turing–type equilibrium chemical patternPhys. Rev. Lett.6429532956CrossRefPubMedGoogle Scholar
  9. Crampin, E.J., Gaffney, E.A., Maini, P.K. 2002Reaction and diffusion on growing domains: Scenarios for robust pattern formationBull. Math. Biol.6110931120CrossRefGoogle Scholar
  10. Crampin E.J. (2000). Reaction-diffusion Patterns on Growing Domains, D Phil thesis, University of Oxford.Google Scholar
  11. Kepper, P, Castets, V, Dulos, E, Boissonade, J. 1991Turing–type chemical pattern in the chlorite–iodide–malonic acid reactionPhysica D.49161169Google Scholar
  12. Gierer, A, Meinhardt, H. 1972A theory of biological pattern formationKybernetik123039CrossRefPubMedGoogle Scholar
  13. Jimack, P.K., Wathen, A.J. 1991Temporal derivatives in the finite element method on continuously deforming gridsSIAM J Numer. Anal.289901003CrossRefGoogle Scholar
  14. Kondo, S, Asai, R. 1995A reaction–diffusion wave on the skin of the marine angelfish PomacanthusNature376765768CrossRefGoogle Scholar
  15. Lee, K.J., McCormick, W.D., Ouyang, Q, Swinney, H.L. 1994Experimental observation of self-replicating spots in a reaction-diffusion systemNature369215218CrossRefGoogle Scholar
  16. Lengyel, I, Epstein, I.R. 1991Modelling of Turing structure in the chlorite–iodide–malonic acid–starch reaction systemScience251650652Google Scholar
  17. Madzvamuse, A, Maini, P.K., Wathen, A.J. 2003A moving grid finite element method applied to a model biological pattern generatorJ. Comp. Phys.190478500CrossRefGoogle Scholar
  18. Madzvamuse, A, Maini, P.K., Wathen, A.J., Sekimura, T. 2002A predictive model for color pattern formation in the butterfly wing of Papilio dardanusHiroshima Math. J.32325336MathSciNetGoogle Scholar
  19. Madzvamuse, A, Thomas, R.D.K., Maini, P.K., Wathen, A.J. 2002A numerical approach to the study of spatial pattern formation in the Ligaments of Arcoid BivalvesBull. Math. Bio.64501530CrossRefGoogle Scholar
  20. Madzvamuse A. (2000). A Numerical Approach to the Study of Spatial Pattern Formation, D Phil thesis, University of Oxford.Google Scholar
  21. Maini, P.K., Solursh, M. 1991Cellular mechanisms of pattern formation in the development of limbInt. Rev. Cytology.12991133Google Scholar
  22. Meinhardt, H. 1995The Algorithmic Beauty of Sea ShellsSpringer-VerlagHeidelbergGoogle Scholar
  23. Miller, K, Miller, R.N. 1981Moving finite elementsPart I SIAM J. Num.Anal.1810191032CrossRefGoogle Scholar
  24. Miller, K. 1981Moving finite elementsPart II. SIAM J Num. Anal.1810331057CrossRefGoogle Scholar
  25. Müller, J.D., Roe, P.L., Deconinck, H. 1993A frontal approach for internal node generation for Delaunay triangulationInt. J. Num. Meth. Fluids.17241256Google Scholar
  26. Murray, J.D. 1993Mathematical BiologySpringer-VerlagHeidelberg, NYGoogle Scholar
  27. Murray, J.D. 1981On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markingsPhil. Trans. R. Soc. Lond. B.295473496Google Scholar
  28. Nijhout, H.F. 1991The development and Evolotion of Butterfly Wing PatternsSmithsonian Inst. PressWashington, DCGoogle Scholar
  29. Nijhout, F.H., Maini, P.K., Madzvamuse, A, Wathen, A.J., Sekimura, T. 2003Pigmentation pattern formation in butterflies - experiments and modelsComptes Rendus Biologies328711727Google Scholar
  30. Painter, K.J., Maini, P.K., Othmer, H.G. 1999Stripe formation in juvenile Pomacanthus explained by a generalised Turing mechanism with chemotaxisProc. Nat. Acad. Sci. USA.9655495554CrossRefPubMedGoogle Scholar
  31. Pearson, J.E. 1993Complex patterns in a simple systemScience261189192Google Scholar
  32. Ruuth, S. 1995Implicit-explicit methods for reaction-diffusion problems in pattern-formationJ. Math. Biol.34148176CrossRefGoogle Scholar
  33. Saad Y. (1994). SPARSEKIT, a basic tool kit for sparse matrix computations Scholar
  34. Saad Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing Co.Google Scholar
  35. Schnakenberg, J. 1979Simple chemical reaction systems with limit cycle behaviorJ. Theor. Biol.81389400CrossRefPubMedGoogle Scholar
  36. Sekimura, T, Madzvamuse, A, Wathen, A.J., Maini, P.K. 2000A model for colour pattern formation in the butterfly wing of Papilio dardanusProc. Roy. Soc. Lon. B.267851859CrossRefGoogle Scholar
  37. Sun, W, Tang, T, Ward, J.M., Wei, J. 2003Numerical challenges for resolving spike dynamics for two reaction-diffusion systemsStud. Appl. Math1114184CrossRefGoogle Scholar
  38. Thomas D. (1975). Artificial enzyme membrane, transport, memory and oscillatory phenomena. In Analysis and Control of Immobilised Enzyme Systems Thomas D, Kervenez J.-P., (ed.), Springer Verlag, Berlin, Heidelberg, New York pp.115–150.Google Scholar
  39. Thomas, R. D. K., Madzvamuse A, Maini, P. K., and Wathen, A. J (2000). Growth patterns of noetiid ligaments: implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves. In The Evolutionary Biology of the Bivalvia, Harper, E. M., Taylor J.D., and Crame, J. A., (eds.), Geological Society Special Publication, 177, 289–279.Google Scholar
  40. Turing, A.M. 1952The chemical basis of morphogenesisPhil. Trans. Roy. Soc. Lond. B2373772Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Anotida Madzvamuse
    • 1
  • Philip K. Maini
    • 2
  • Andrew J. Wathen
    • 3
  1. 1.Mathematics DepartmentAuburn UniversityAuburnUSA
  2. 2.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  3. 3.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations