Journal of Scientific Computing

, Volume 22, Issue 1–3, pp 479–500 | Cite as

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems



The coupled Stokes and Darcy flows problem is solved by the locally conservative discontinuous Galerkin method. Optimal error estimates for the fluid velocity and pressure are derived.


Surface and subsurface flow error estimates interface conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. 1975Sobolev SpacesAcademic PressNew YorkGoogle Scholar
  2. Arnold, D. N. 1982An interior penalty finite element method with discontinuous elementsSIAM J. Numer. Anal.19742760CrossRefGoogle Scholar
  3. Beavers, G. S., Joseph, D. D. 1967Boundary conditions at a naturally impermeable wallJ. Fluid. Mech.30197207Google Scholar
  4. Bernardi, C., Hecht, F., and Pironneau, O. (2002). Coupling Darcy and Stokes Equations for Porous Media with Cracks, Technical Report R02042, Paris VI.Google Scholar
  5. Brenner, S. (2003). Korn’s inequalities for piecewise H 1 vector fields Mathematics of Computation, S 0025-5718(03)01579-5, Article electronically published.Google Scholar
  6. Crouzeix, M., Falk, R. S. 1989Non conforming finite elements for the Stokes problemMath. of Comp.52437456Google Scholar
  7. Crouzeix, M., Raviart, P.-A. 1973Conforming and nonconforming finite element methods for solving the stationary Stokes equations I.Rev. Franc caise Automat. Informat. Recherche Opérationnelle Sér. Rouge.73375Google Scholar
  8. Discacciati, M., Miglio, E., Quarteroni, A. 2001Mathematical and numerical models for coupling surface and groundwater flowsAppl. Numer. Math4357742002. 19th Dundee Biennial Conference on Numerical AnalysisCrossRefGoogle Scholar
  9. Discacciati, M., Quarteroni, A.,  et al. 2003

    Analysis of a domain decomposition method for the coupling of stokes and darcy equations

    Brezzi,  eds. Numerical Analysis and Advanced Applications –- Enumath 2001SpringerMilan320
    Google Scholar
  10. Ewing, R. E., Iliev, O. P., and Lazarov, R. D. (1992). Numerical Simulation of Contamination Transport Due to Flow in Liquid and Porous Media, Technical Report 1992-10, Enhanced Oil Recovery Institute, University of Wyoming.Google Scholar
  11. Fortin, M., Soulié, M. 1983A non-conforming piecewise quadratic finite element on trianglesInt. J. Nume. Methods Eng.19505520CrossRefGoogle Scholar
  12. Girault, V., Rivière, B., and Wheeler, M. F. (2002). A Discontinuous Galerkin Method With Non-Overlapping Domain Decomposition for the Stokes and Navier-Stokes Problems, Technical Report TICAM 02-08, to appear in Mathematics of Computation.Google Scholar
  13. Girault, V., Raviart, P.-A. 1986Finite element methods for Navier-Stokes EquationsSpringer-VerlagBerlinGoogle Scholar
  14. Jäger, W., Mikelić, A. 2000On the interface boundary condition of Beavers, Joseph, and SaffmanSIAM J. Appl. Math.6011111127CrossRefGoogle Scholar
  15. Layton, W. J., Schieweck, F., Yotov, I. 2003Coupling fluid flow with porous media flowSIAM J. Numer. Anal.4021952218CrossRefGoogle Scholar
  16. Mardal, K.E., Tai, X.-C., Winther, R. 2002A robust finite element method for Darcy-Stokes flowSIAM J. Numer. Anal.4016051631(electronic)CrossRefGoogle Scholar
  17. Payne, L. E., Straughan, B. 1998Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questionsJ. Math. Pures Appl.77317354CrossRefGoogle Scholar
  18. Rivière, B., Wheeler, M. F., Girault, V. 1999Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problemsPart I. Comput. Geosci.3337360CrossRefGoogle Scholar
  19. Rivière, B., Wheeler, M. F., Girault, V. 2001A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problemsSIAM J. Numer. Anal.39902931CrossRefGoogle Scholar
  20. Rivière, B., and Yotov, I. (2003). Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal. accepted, 2004.Google Scholar
  21. Saffman, P. 1971On the boundary condition at the surface of a porous mediaStud. Appl. Math.50292315Google Scholar
  22. Wheeler, M. F. 1978An elliptic collocation-finite element method with interior penaltiesSIAM J. Numer. Anal.15152161Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA

Personalised recommendations