Journal of Scientific Computing

, Volume 22, Issue 1–3, pp 269–288

# Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems

• C. Eskilsson
• S. J. Sherwin
Article

## Abstract

Two-dimensional shallow water systems are frequently used in engineering practice to model environmental flows. The benefit of these systems are that, by integration over the water depth, a two-dimensional system is obtained which approximates the full three-dimensional problem. Nevertheless, for most applications the need to propagate waves over many wavelengths means that the numerical solution of these equations remains particularly challenging. The requirement for an accurate discretization in geometrically complex domains makes the use of spectral/hp elements attractive. However, to allow for the possibility of discontinuous solutions the most natural formulation of the system is within a discontinuous Galerkin (DG) framework. In this paper we consider the unstructured spectral/hp DG formulation of (i) weakly nonlinear dispersive Boussinesq equations and (ii) nonlinear shallow water equations (a subset of the Boussinesq equations). Discretization of the Boussinesq equations involves resolving third order mixed derivatives. To efficiently handle these high order terms a new scalar formulation based on the divergence of the momentum equations is presented. Numerical computations illustrate the exponential convergence with regard to expansion order and finally, we simulate solitary wave solutions.

## Keywords

Boussinesq equations shallow water equations spectral/hp discontinuous Galerkin method

## References

1. Abbott, M. B., McCowan, A. D., Warren, I. R. 1984Accuracy of short wave numerical modelsJ. Hydraul. Eng.11012871301Google Scholar
2. Aizinger, V., Dawson, C. 2002A discontinuous Galerkin method for two-dimensional flow and transport in shallow waterAdv. Water Resour.256784
3. Ambrosi, D, Quartapelle, L 1998A Taylor–Galerkin method for simulating nonlinear dispersive water wavesJ. Comput. Phy146546569
4. Antunes Do Carmo, J.S, Seabra Santos, FJ 1993Surface waves propagation in shallow water: a finite element modelInt. J. Numer. Meth. Fluids16447459
5. Bassi, F, Rebay, S 1997A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equationsJ. Comput. Phy.131267279
6. Boyd, J. P. 1980Equatorial solitary waves Part 1: Rossby solitonsJ. Phys. Oceanogr1016991717
7. Boyd, J. P. 1985Equatorial solitary waves Part 3: Westward-traveling modonsJ. Phys. Oceanogr154654
8. Cockburn, B, Shu, CW 2001Runge–Kutta discontinuous Galerkin methods for convection-dominated problemsJ. Sci. Comput16173261
9. Dubiner, M. 1991Spectral methods on triangles and other domainsJ. Sci. Comput.6345390
10. Dupont, F. (2001). Comparison of Numerical Methods for Modelling Ocean Circulation in Basins with Irregular Coasts, Ph.D. Thesis, McGill University.Google Scholar
11. Eskilsson, C, Sherwin, SJ 2002A discontinuous spectral element model for Boussinesq-type equationsJ. Sci. Comput17143152
12. Eskilsson, C., Sherwin, S. J. 2003An hp/spectral element model for efficient long-time integration of Boussinesq-type equationsCoast. Eng. J.45295320
13. Eskilsson, C., and Sherwin, S. J. A triangular spectral/hp discontinuous Galerkin method for modelling two-dimensional shallow water equations. Int. J. Numeric. Meth. Fluids, in press.Google Scholar
14. Giraldo, F. X. (1998). A spectral element semi-Lagrangian method for the shallow water equations on unstructured grids. Proceeding of the Fourth World Congress on Computational Mechanics.Google Scholar
15. Giraldo, F. X. 2001A spectral element shallow water model on spherical geodesic gridsInt. J. Numeric. Meth. Fluids35869901
16. Giraldo, F. X., Hesthaven, J. S., Warburton, T. 2002Nodal high-order discontinuous Galerkin methods for the spherical shallow water equationsJ. Comput. Phy.181499525
17. Gobbi, M. F., Kirby, J. T., Wei, G. 2000A fully nonlinear Boussinesq model for surface waves Part 2 Extension to $${\cal O}$$(kh)4J. Fluid Mech405181210
18. Iskandarani, M., Haidvogel, D. B., Boyd, J. P. 1995A staggered spectral element model with application to the oceanic shallow water equationsInt. J. Numeric. Meth. Fluids20393414
19. Karniadakis, GEm, Sherwin, SJ 1999Spectral/hp element methods for CFDOxford University PressNew YorkGoogle Scholar
20. Katopodes, K. D., Wu, C. T. 1987Computation of finite amplitude dispersive wavesJ. Waterway Port Coast. Ocean Eng.113327346Google Scholar
21. Koornwinder, T 1975Two-variable analogues of the classical orthogonal polynomialsAskey, RA eds. Theory and Application of Special FunctionsAcademic PressNew York435495Google Scholar
22. Langtangen, H. P., Pedersen, G. 1998Computational models for weakley dispersive nonlinear water wavesComput. Meth. Appl. Mech. Eng.160337358
23. Li, H., Liu, R. X. 2001The discontinuous Galerkin finite element method for the 2d shallow water equationsMath. Comput. Simulation56171184
24. Ma, H. 1993A spectral element basin model for the shallow water equationsJ. Comput. Phy.109133149
25. Madsen, P.A., Murray, I. R., S\orensen, O.R. 1991A new form of the Boussinesq equations with improved linear dispersion characteristicsCoast. Eng.15371388
26. Madsen, P. A., Schäffer, H. A. 1998Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis.Philos. Trans. R. Soc.A35631233184
27. Madsen, P. A., Bingham, H. B., Liu, H. 2002A new Boussineq method for fully nonlinear waves from shallow to deep waterJ. Fluid Mech.462130
28. Nwogu, O. 1993Alternative form of Boussinesq equations for nearshore wave propagationJ. Waterway Port Coast. Ocean Eng.119618638Google Scholar
29. Peregrine, D. H. 1967Long waves on a beachJ. Fluid Mech.27815827Google Scholar
30. Proriol, J. 1957Sur une famile de polynomes Ã¡ deux variables orthogonax dans un triangleC. R. Acad. Sci Paris24524592461Google Scholar
31. Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q., Kennedy, A. 2001A fully nonlinear Boussinesq model in generalized curvilinear coordintaesCoast. Eng.42337358
32. Schwanenberg, D., Köngeter, J. 2000A discontinuous Galerkin method for the shallow water equations with source termsCockburn, BKarniadakis, G. E.Shu, C.-W. eds. Discontinuous Galerkin MethodsSpringer Heidelberg289309Google Scholar
33. Taylor, M., Tribbia, J., Iskandarani, M. 1997The spectral element method for the shallow water equations on a sphereJ. Comput. Phy.13092108
35. Walkley, M. A. 1999A Numerical Method for Extended Boussinesq Shallow-Water Wave EquationsUniversity of LeedsUKPh.D. ThesisGoogle Scholar
36. Wei, G., Kirby, J. T. 1995Time-dependent numerical code for extended Boussinesq equationsJ. Waterway Port Coast. Ocean Eng.121251261
37. Yan, J., Shu, C.-W. 2002Local discontinuous Galerkin methods for partial differential equations with higher order derivatives.J. Sci. Comput.172747