Journal of Scientific Computing

, Volume 21, Issue 3, pp 321–339 | Cite as

High-Order Compact Schemes with Filters on Multi-block Domains

  • Xiangang Zhang
  • Gregory A. Blaisdell
  • Anastasios S. Lyrintzis


This paper presents the results of using high-order compact schemes with a high-order filter on multi-block domains. The Linearized Euler Equations (LEE) are solved on a uniform mesh for benchmark problems in one and two dimensions. Also a two dimensional mixing layer is solved by using Large-Eddy Simulation (LES). Three different boundary schemes are compared. The results compare well with the exact solutions and single-block domain results. The effect of the number of points of overlap among the subdomains is investigated. Having four points of overlap is chosen as a compromise between accuracy and efficiency.

Multi-block compact difference schemes compact filters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, J. H., and Mehta, R. D. (1990). Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA Journal, 28(12), 2034–2042.Google Scholar
  2. 2.
    Boersma B. J., and Lele S. K. (1999). Large eddy simulation of a Mach 0.9 turbulent jet. AIAA Paper No. 1999–1874Google Scholar
  3. 3.
    Bogey, C. (2000). Calcul Direct du Bruit A´erodynamique et Validation de Modeles Acoustiques Hybrides. PhD thesis, Laboratoire de M´ecanique des Fluides et d'Acoustique, ´ Ecole Centrale de Lyon, France.Google Scholar
  4. 4.
    Champagne, F. H. Pao, Y. H., and Wygnanski, I. J. (1976). On the two-dimensional mixing region. J. of Fluid Mech. 74, 209–250.Google Scholar
  5. 5.
    Erlebacher, G., Hussaini, M. Y., Speziale, C. G., and Zang, T. A. (1992). Toward the Large-Eddy Simulation of Compressible Turbulent Flows. J of Fluid Mech. 238, 155–185.Google Scholar
  6. 6.
    Freund, J. B. (2001). Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. of Fluid Mech. 438, 277–305.Google Scholar
  7. 7.
    Gaitonde, D. V., and Visbal, M. R. (1999). Further development of a Navier-Stokes solution procedure based on higher-order formulas. AIAA Paper No. 1999–0557.Google Scholar
  8. 8.
    Gaitonde, D. V., and Visbal, M. R. (2000). Pade-type higher-order boundary filters for the navier-stokes equations. AIAA Journal, 38(11). 2103–2112.Google Scholar
  9. 9.
    Hardin, J. C., Ristorcelli, J. R., and Tam C. K. W. (1995). ICASE/LaRC workshop on benchmark problems in computational aeroacoustics. NASA Conference Publication 3300.Google Scholar
  10. 10.
    Koutsavdis, E. K. (2000). On the Development of a Jet Noise Prediction Methodology. PhD thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.Google Scholar
  11. 11.
    Koutsavdis, E. K., Blaisdell, G. A., and Lyrintzis, A. S. (1999). On the use of compact schemes with spatial filtering in computational aeroacoustics. AIAA Paper No. 1999–0360.Google Scholar
  12. 12.
    Lele, S. K. (1992). Compact Finite Difference Schemes with spectral-like resolution. J. Computat. Phy. 103(1): 16–42.Google Scholar
  13. 13.
    Pope, S. B. (2000). Turbulent Flows. Cambridge University Press.Google Scholar
  14. 14.
    Rizzetta, D. P., Visbal, M. R., and Blaisdell, G. A. (1999). Application of a High-order Compact Difference Scheme to Large-Eddy and Direct Numerical Simulation. AIAA Paper No. 1999–3714.Google Scholar
  15. 15.
    Rogers, M. M., and Moser, R. D., (1994). Direct Simulation of a Self-similar Turbulent Mixing Layer. Phy. of Fluids, 6(2). 903–923.Google Scholar
  16. 16.
    Stanley, S., and Sarkar, S. (1997). Simulations of Spatially Developing Two-dimensional Shear Layers and Jets. Theoretical and Comput. Fluid Dynamics, 9. 121–147.Google Scholar
  17. 17.
    Tam, C. K. W., and Webb, J. C. (1993). Dispersion-relation-preserving finite difference schemes for computational aeroacoustics. J. of Comput. Phy. 107, 262–281.Google Scholar
  18. 18.
    Uzun, A., Blaisdell, G. A., and Lyrintzis, A. S. (2002). Recent Progress Towards a Large Eddy Simulation Code for Jet Aeroacoustics. AIAA Paper No. 2002–2598.Google Scholar
  19. 19.
    Uzun, A., Blaisdell, G. A., and Lyrintzis, A. S. (2004). Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets. J. Sci. Comput. 21, 283–319.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Xiangang Zhang
    • 1
  • Gregory A. Blaisdell
    • 1
  • Anastasios S. Lyrintzis
    • 1
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityUSA

Personalised recommendations