Advertisement

Evolution of the Carnassial in Living Mammalian Carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): Diet, Phylogeny, and Allometry

  • Sergio D. TarquiniEmail author
  • M. Amelia Chemisquy
  • Francisco J. Prevosti
Original Paper

Abstract

Different living mammals have developed a carnivorous habit (e.g., Carnivora, Dasyuridae, Thylacinidae, some Didelphidae). They exhibit different specializations for carnivory; however, they share some characters such as a carnassial molar. Previous studies have correlated the shape of molars with diet using morphometric indices or surface scans. In this work, we used 3D geometric morphometrics to explore the shape of the lower carnassials of 235 specimens corresponding to 71 extant species of Carnivora and six extant species of Marsupialia, both Didelphimorphia and Dasyuromorphia. We statistically estimated the effect of size, diet, and phylogeny on molar shape. All the analyses indicated a higher correlation between diet and molar shape, and a better correlation between molar shape and the position of each species on the phylogeny. Therefore, if we take into account the phylogenetic pattern, we can use molar morphology to infer diet of fossil species. Finally, this work evaluates for the first time, in a quantitative way, which of the lower molars of the Metatheria (m3 or m4) is the best analogue to the m1 of Carnivora; our results indicated the m4 is the best analogue.

Keywords

Canonical phylogenetic ordination Diet classification Dietary proxies Evolutionary constraints Geometric morphometrics 

Notes

Acknowledgements

We thank D. Flores and P. Teta (MACN-ma) and I. Olivares (MLP-ma) for access to specimens under their care; J. Rajmil, C. Bustamante, W. Bustamante, and M. Mignana for replicas of molars deposited in foreign collections; S. Ladevèze, V. Krapovickas, A. Forasiepi, G. Cassini, C. Marsicano, and two anonymous reviewers for providing useful comments that helped improve the manuscript; E. Daneri Grosso and M. Macchioli for helping with the English version of the manuscript. This is a contribution to projects PICT-2015-0966 (F.P.).

Supplementary material

10914_2018_9448_MOESM1_ESM.doc (612 kb)
ESM 1 (DOC 611 kb)
10914_2018_9448_MOESM2_ESM.doc (340 kb)
ESM 2 (DOC 339 kb)
10914_2018_9448_MOESM3_ESM.doc (3 mb)
ESM 3 (DOC 3074 kb)
10914_2018_9448_MOESM4_ESM.doc (304 kb)
ESM 4 (DOC 304 kb)
10914_2018_9448_MOESM5_ESM.pdf (434 kb)
ESM 5 (PDF 434 kb)
10914_2018_9448_MOESM6_ESM.html (314 kb)
ESM 6 (HTML 313 kb)
10914_2018_9448_MOESM7_ESM.pdf (276 kb)
ESM 7 (PDF 276 kb)
10914_2018_9448_MOESM8_ESM.pdf (350 kb)
ESM 8 (PDF 350 kb)

References

  1. Adams DC (2014a) A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68:2675–2688.  https://doi.org/10.1111/evo.12463 PubMedCrossRefGoogle Scholar
  2. Adams DC (2014b) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63:685–697.  https://doi.org/10.1093/sysbio/syu030 PubMedCrossRefGoogle Scholar
  3. Adams DC, Collyer ML (2016) On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70:2623–2631.  https://doi.org/10.1111/evo.13045 PubMedCrossRefGoogle Scholar
  4. Adams DC, Collyer ML, Kaliontzopoulou A, Sherratt E (2017) Geomorph: software for geometric morphometric analyses. R package version 3.0.5. https://cran.r-project.org/package=geomorph
  5. Adler D, Murdoch D, Nenadic O, Urbanek S, Chen M, Gebhardt A, Bolker B, Csardi G, Strzelecki A, Senger A, Eddelbuettel D (2017) rgl: 3D Visualization Using OpenGL. R package version 0.98.22. https://CRAN.R-project.org/package=rgl
  6. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Aust Ecol 26:32–46.  https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x CrossRefGoogle Scholar
  7. Asahara M, Saito K, Kishida T, Takahashi K, Bessho K (2016) Unique pattern of dietary adaptation in the dentition of Carnivora: its advantage and developmental origin. Proc R Soc B 283:20160375 .  https://doi.org/10.1098/rspb.2016.0375 CrossRefGoogle Scholar
  8. Astúa D (2015) Family Didelphidae (opossums). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 70–186Google Scholar
  9. Austin JJ, Soubrier J, Prevosti FJ, Prates L, Trejo V, Mena F, Cooper A (2013) The origins of the enigmatic Falkland Islands wolf. Nat Commun 4:1552 .  https://doi.org/10.1038/ncomms2570 PubMedCrossRefGoogle Scholar
  10. Baker AM (2015) Family Dasyuridae (carnivorous marsupials). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 232–348Google Scholar
  11. Bapst DW (2012) paleotree : an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol Evol 3:803–807.  https://doi.org/10.1111/j.2041-210X.2012.00223.x CrossRefGoogle Scholar
  12. Biknevicius AR, Van Valkenburgh B (1996) Design for killing: craniodental adaptations of predators. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Vol. 2. Cornell Univerty Press, New York, pp 393–428Google Scholar
  13. Blackhall S (1980) Diet of the eastern native-cat, Dasyurus viverrinus (Shaw), in southern Tasmania. Wildl Res 7:191–197.  https://doi.org/10.1071/WR9800191
  14. Blomberg SP, Garland TJ (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910 .  https://doi.org/10.1046/j.1420-9101.2002.00472.x CrossRefGoogle Scholar
  15. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745.  https://doi.org/10.1111/j.0014-3820.2003.tb00285.x PubMedCrossRefGoogle Scholar
  16. Butler PM (1946) The evolution of carnassial dentitions in the Mammalia. Proc Zool Soc Lond 116:198–220.  https://doi.org/10.1111/j.1096-3642.1946.tb00117.x
  17. Calandra I, Merceron G (2016) Dental microwear texture analysis in mammalian ecology. Mammal Rev 46:215–228.  https://doi.org/10.1111/mam.12063 CrossRefGoogle Scholar
  18. Ceotto P, Finotti R, Santori R, Cerqueira R (2009) Diet variation of the marsupials Didelphis aurita and Philander frenatus (Didelphimorphia, Didelphidae) in a rural area of Rio de Janeiro state, Brazil. Mastozool Neotrop 16:49–58Google Scholar
  19. Chemisquy MA, Prevosti FJ, Martin G, Flores DA (2015) Evolution of molar shape in didelphid marsupials (Marsupialia: Didelphidae): analysis of the influence of ecological factors and phylogenetic legacy. Zool J Linn Soc 173:217–235.  https://doi.org/10.1111/zoj.12205 CrossRefGoogle Scholar
  20. Christensen HB (2014) Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS One 9:e102789.  https://doi.org/10.1371/journal.pone.0102789 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cooper CE (2005) Myrmecobius fasciatus (Dasyuromorphia: Myrmecobiidae). Mammal Species 43:129–140.  https://doi.org/10.1644/881.1
  22. Crusafont-Pairó M, Truyols-Santonja J (1953) Un ensayo goniométrico sobre la carnicera inferior de los Fisípedos. Estud Geológicos 18:225–256Google Scholar
  23. Crusafont-Pairó M, Truyols-Santonja J (1956) A biometric study of the evolution of fissiped carnivores. Evolution 10:314–332CrossRefGoogle Scholar
  24. Davis M, Pineda Munoz S (2016) The temporal scale of diet and dietary proxies. Ecol Evol 6:1883–1897.  https://doi.org/10.1002/ece3.2054 PubMedPubMedCentralCrossRefGoogle Scholar
  25. de Muizon C, Lange-Badré B (1997) Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30:353–366.  https://doi.org/10.1111/j.1502-3931.1997.tb00481.x
  26. Dragoo JW (2009) Family Mephitidae (skunks). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 532–563Google Scholar
  27. Echarri S, Ercoli MD, Chemisquy MA, Turazzini G, Prevosti FJ (2017) Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth Environ Sci Trans R Soc Edinburgh 106:277–288.  https://doi.org/10.1017/S1755691016000190 CrossRefGoogle Scholar
  28. Eizirik E (2012) A molecular view on the evolutionary history and biogeography of neotropical carnivores (Mammalia, Carnivora). In: Patterson BD, Costa LP (eds) Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp 123–142CrossRefGoogle Scholar
  29. Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O'Brien SJ (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63 .  https://doi.org/10.1016/j.ympev.2010.01.033 PubMedCrossRefGoogle Scholar
  30. Evans AR (2013) Shape descriptors as ecometrics in dental ecology. Hystrix 24:133–140.  https://doi.org/10.4404/hystrix-24.1-6363 CrossRefGoogle Scholar
  31. Evans AR, Sanson GD (2006) Spatial and functional modeling of carnivore and insectivore molariform teeth. J Morphol 267:649–662.  https://doi.org/10.1002/jmor.10285 PubMedCrossRefGoogle Scholar
  32. Evans AR, Fortelius M, Jernvall J, Eronen JT (2005) Dental ecomorphology of extant European carnivorans. In: Żądzińska E (ed) Current Trends in Dental Morphology Research: 13th International Symposium on Dental Morphology. University of Lódz Press, Lódz, pp 223–232Google Scholar
  33. Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81.  https://doi.org/10.1038/nature05433 PubMedCrossRefGoogle Scholar
  34. Ewer RF (1973) The Carnivores. Cornell Univerty Press, New YorkGoogle Scholar
  35. Figueirido B, Tseng ZJ, Martín-Serra A (2013) Skull shape evolution in durophagous carnivorans. Evolution 67:1975–1993.  https://doi.org/10.1111/evo.12059 PubMedCrossRefGoogle Scholar
  36. Flores DA (2009) Phylogenetic analyses of postcranial skeletal morphology in didelphid marsupials. Bull Am Mus Nat Hist 320:1–81CrossRefGoogle Scholar
  37. Flynn JJ, Wesley-Hunt GD (2005) Carnivora. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. The Johns Hopkins University Press, Baltimore and London, pp 175–198Google Scholar
  38. Forasiepi AM, Sánchez-Villagra MR (2014) Heterochrony, dental ontogenetic diversity, and the circumvention of constraints in marsupial mammals and extinct relatives. Paleobiology 40:222–237.  https://doi.org/10.1666/13034 CrossRefGoogle Scholar
  39. Friend JA (2015) Family Myrmecobiidae (numbat). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 222–231Google Scholar
  40. Garshelis DL (2009) Family Ursidae (bears). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 448–497Google Scholar
  41. Giannini NP (2003) Canonical phylogenetic ordination. Syst Biol 52:684–695.  https://doi.org/10.1080/10635150390238888 PubMedCrossRefGoogle Scholar
  42. Gilchrist JS, Jennings AP, Veron G, Cavallini P (2009) Family Herpestidae (Mongooses). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 262–329Google Scholar
  43. Godínez Domínguez E, Freire J (2003) Information theoretic approach for selection of spatial and temporal models of community organization. Mar Ecol Prog Ser 253:17–24CrossRefGoogle Scholar
  44. Goillot C, Blondel C, Peigné S (2009) Relationships between dental microwear and diet in Carnivora (Mammalia) - Implications for the reconstruction of the diet of extinct taxa. Palaeogeogr Palaeoclimatol Palaeoecol 271:13–23.  https://doi.org/10.1016/j.palaeo.2008.09.004 CrossRefGoogle Scholar
  45. Goin FJ, Velázquez C, Scaglia O (1992) Orientación de las crestas cortantes en el molar tribosfénico. Sus implicancias funcionales en didelfoideos (Marsupialia) fósiles y vivientes. Rev del Mus La Plata (Nueva Ser 9:183–198)Google Scholar
  46. Goin FJ, Woodburne MO, Zimicz AN, Martin GM, Chornogubsky L (2016) A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals. Springer, ChamGoogle Scholar
  47. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B 53:285–339Google Scholar
  48. Goodman SM (2009) Family Eupleridae (Madagascar carnivores). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 330–351Google Scholar
  49. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B Biol Sci 326:119–157.  https://doi.org/10.1098/rstb.1989.0106
  50. Graw B, Manser M (2016) Life history patterns and biology of the slender mongoose (Galerella sanguinea) in the Kalahari Desert. J Mammal 98(2):332–338.  https://doi.org/10.1093/jmammal/gyw178
  51. Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425.  https://doi.org/10.1086/282146 CrossRefGoogle Scholar
  52. Helgen KM, Veatch EG (2015) Recent extinct Australian marsupials and monotremes. In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 17–31Google Scholar
  53. Hogue AS, Ziashakeri S (2010) Molar crests and body mass as dietary indicators in marsupials. Aust J Zool 58:56–68.  https://doi.org/10.1071/ZO09084 CrossRefGoogle Scholar
  54. Holekamp KE, Kolowski JM (2009) Family Hyaenidae (hyenas). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 234–261Google Scholar
  55. Holliday JA (2010) Evolution in Carnivora: identifying a morphological bias. In: Goswami A, Friscia A (eds) Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Cambridge University Press, New York, pp 189–224CrossRefGoogle Scholar
  56. Jones ME (1995) Guild structure of the large marsupial carnivores in Tasmania. Ph.D. dissertation, University of Tasmania, Hobart.Google Scholar
  57. Jones ME (2003) Covergence in ecomorphology and guild structure among marsupial and placental carnivores. In: Jones ME, Dickman CR, Archer M (eds) Predators with Pouches. CSIRO Publishing, Collingwood, pp 285–296Google Scholar
  58. Jones ME, Barmuta LA (2000) Niche differentiation among sympatric Australian dasyurid carnivores. J Mammal 81:434–447.  https://doi.org/10.1644/1545-1542(2000)081<0434 CrossRefGoogle Scholar
  59. Kay RF (1975) The functional adaptions of primate molar teeth. Am J Phys Anthropol 43:195–216PubMedCrossRefGoogle Scholar
  60. Kay RF, Hylander WL (1978) The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In: Montgomery GG (ed) The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, D.C., pp 173–191Google Scholar
  61. Kay RF, Sussman RW, Tattersall I (1978) Dietary and dental variations in the genus Lemur, with comments concerning dietary-dental correlations among Malagasy primates. Am J Phys Anthropol 49:119–127.  https://doi.org/10.1002/ajpa.1330490118
  62. Kays R (2009) Family Procyonidae (raccoons). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 504–531Google Scholar
  63. Kemsley EK (1996) Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods. Chemom Intell Lab Syst 33:47–61.  https://doi.org/10.1016/0169-7439(95)00090-9
  64. Klingenberg CP (2008) Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol 35:186–190.  https://doi.org/10.1007/s11692-008-9029-4 CrossRefGoogle Scholar
  65. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357.  https://doi.org/10.1111/j.1755-0998.2010.02924.x PubMedCrossRefGoogle Scholar
  66. Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Syst Biol 54:678–688.  https://doi.org/10.1080/10635150590947258 PubMedCrossRefGoogle Scholar
  67. Koepfli K-P, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10.  https://doi.org/10.1186/1741-7007-6-10 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant function analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018.  https://doi.org/10.1016/j.jas.2011.06.028
  69. Krawczyk AJ, Bogdziewicz M, Majkowska K, Glazaczow A (2016) Diet composition of the Eurasian otter Lutra lutra in different freshwater habitats of temperate Europe: a review and meta-analysis. Mammal Rev 46:106–113.  https://doi.org/10.1111/mam.12054 CrossRefGoogle Scholar
  70. Kruuk H (2006) Otters: Ecology, Behaviour and Conservation. Oxford University Press, New YorkCrossRefGoogle Scholar
  71. Kutschera VE, Bidon T, Hailer F, Rodi JL, Fain SR, Janke A (2014) Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Mol Biol Evol 31:2004–2017.  https://doi.org/10.1093/molbev/msu186
  72. Langer P, Chivers DJ (1994) Classification of foods for comparative analysis of gastro-intestinal tract. In: Chivers DJ, Langer P (eds) The Digestive System in Mammals: Food Form and Function. Cambridge University Press, Cambridge, pp 74–86CrossRefGoogle Scholar
  73. Lanszki J, Kurys A, Heltai M, Csányi S, Ács K (2015) Diet composition of the golden jackal in an area of intensive big game management. Ann Zool Fennici 52:243–255.  https://doi.org/10.5735/086.052.0403 CrossRefGoogle Scholar
  74. Larivière S, Jennings AP (2009) Family Mustelidae (weasels and relatives). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 564–656Google Scholar
  75. Legendre P, Legendre L (1998) Numerical Ecology, 2nd edition. Elsevier, AmsterdanGoogle Scholar
  76. Li G, Davis BW, Eizirik E, Murphy WJ (2016) Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:1–11.  https://doi.org/10.1101/gr.186668.114 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727.  https://doi.org/10.1086/660020 PubMedCrossRefGoogle Scholar
  78. Macedo J, Loretto D, Vieira MV, Cerqueira R (2006) Classes de desenvolvimento em marsupiais: um método para animais vivos. Mastozool Neotrop 13:133–136Google Scholar
  79. Magnus LZ, Cáceres N (2017) Phylogeny explains better than ecology or body size the variation of the first lower molar in didelphid marsupials. Mammalia 81: 119–133.  https://doi.org/10.1515/mammalia-2015-0070 CrossRefGoogle Scholar
  80. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667Google Scholar
  81. Martins EP, Diniz-Filho JAF, Housworth EA (2002) Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56:1–13.  https://doi.org/10.1111/j.0014-3820.2002.tb00844.x
  82. Meloro C, Raia P (2010) Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evol Biol 37:177–186.  https://doi.org/10.1007/s11692-010-9094-3 CrossRefGoogle Scholar
  83. Meloro C, Clauss M, Raia P (2015) Ecomorphology of Carnivora challenges convergent evolution. Org Divers Evol 15:711–720.  https://doi.org/10.1007/s13127-015-0227-5
  84. Meloro C, Raia P, Piras P, Barbera C, O'Higgins P (2008) The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zool J Linn Soc 154:832–845.  https://doi.org/10.1111/j.1096-3642.2008.00429.x CrossRefGoogle Scholar
  85. Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114.  https://doi.org/10.1007/s11692-011-9109-8 CrossRefGoogle Scholar
  86. Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247.  https://doi.org/10.1007/s11692-009-9055-x CrossRefGoogle Scholar
  87. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) vegan: Comunity Ecology Package. R package version 2.3–5. http://CRAN.R-project.org/package=vegan
  88. Oxnard C, O’Higgins P (2009) Biology clearly needs morphometrics. Does morphometrics need biology? Biol Theory 4:84–97.  https://doi.org/10.1162/biot.2009.4.1.84 CrossRefGoogle Scholar
  89. Padial JM, Avila E, Sanchez JM (2002) Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammal Biol 67:137–146CrossRefGoogle Scholar
  90. Perez IS, Bernal V, Gonzalez PN (2006) Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat 208:769–784PubMedCrossRefGoogle Scholar
  91. Petter G (1969) Interpretation évolutive des caractères de la denture des viverridés africains. Mammalia 33:607–625Google Scholar
  92. Pineda-Munoz S, Alroy J (2014) Dietary characterization of terrestrial mammals. Proc R Soc Lond B 281:20141173CrossRefGoogle Scholar
  93. Pineda-Munoz S, Lazagabaster IA, Alroy J, Evans AR (2017) Inferring diet from dental morphology in terrestrial mammals. Methods Ecol Evol 8:481–491.  https://doi.org/10.1111/2041-210X.12691 CrossRefGoogle Scholar
  94. Popowics TE (2003) Postcanine dental form in the Mustelidae and Viverridae (Carnivora: Mammalia). J Morphol 256:322–341.  https://doi.org/10.1002/jmor.10091 PubMedCrossRefGoogle Scholar
  95. Prevosti FJ, Turazzini GF, Ercoli MD, Hingst-Zaher E (2012a) Mandible shape in marsupial and placental carnivorous mammals: a morphological comparative study using geometric morphometrics. Zool J Linn Soc 164:836–855.  https://doi.org/10.1111/j.1096-3642.2011.00785.x CrossRefGoogle Scholar
  96. Prevosti FJ, Forasiepi AM, Ercoli MD, Turazzini GF (2012b) Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late early Miocene). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, pp 173–193CrossRefGoogle Scholar
  97. Prevosti FJ, Forasiepi A, Zimicz N (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20:3–21.  https://doi.org/10.1007/s10914-011-9175-9 CrossRefGoogle Scholar
  98. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org
  99. Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503.  https://doi.org/10.1111/j.1558-5646.2009.00921.x PubMedCrossRefGoogle Scholar
  100. Reddy D, Kim J, Raaum R (2006) Resample.exe. http://life.bio.sunysb.edu/morph/soft-utility.html
  101. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223.  https://doi.org/10.1007/s003579900054 CrossRefGoogle Scholar
  102. Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev 39:67–78.  https://doi.org/10.1111/j.1365-2907.2008.00134.x CrossRefGoogle Scholar
  103. Sacco T, Van Valkenburgh B (2004) Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zool 263:41–54.  https://doi.org/10.1017/S0952836904004856 CrossRefGoogle Scholar
  104. Sato JJ, Wolsan M, Prevosti FJ, D'Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757.  https://doi.org/10.1016/j.ympev.2012.02.025 PubMedCrossRefGoogle Scholar
  105. Savage RJG (1977) Evolution in carnivorous mammals. Palaeontology 20:237–271Google Scholar
  106. Seetah TK, Cardini A, Miracle PT (2012) Can morphospace shed light on cave bear spatial-temporal variation? Population dynamics of Ursus spelaeus from Romualdova pećina and Vindija, (Croatia). J Archaeol Sci 39:500–510.  https://doi.org/10.1016/j.jas.2011.10.005 CrossRefGoogle Scholar
  107. Shanahan T (2011) Phylogenetic inertia and Darwin’s higher law. Stud Hist Philos Biol Biomed Sci 42:60–68.  https://doi.org/10.1016/j.shpsc.2010.11.013
  108. Sheets HD, Covino KM, Panasiewicz JM, Morris SR (2006) Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front Zool 3:15.  https://doi.org/10.1186/1742-9994-3-15 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sillero-Zubiri C (2009) Family Canidae (dogs). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 352–447Google Scholar
  110. Smits PD, Evans AR (2012) Functional constraints on tooth morphology in carnivorous mammals. BMC Evol Biol 12:146.  https://doi.org/10.1186/1471-2148-12-146 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Solé F, Ladevèze S (2017) Evolution of the hypercarnivorous dentition in mammals (Metatheria, Eutheria) and its bearing on the development of tribosphenic molars. Evol Dev 19:56–68.  https://doi.org/10.1111/ede.12219 PubMedCrossRefGoogle Scholar
  112. Steinmetz R, Garshelis DL, Chutipong W, Seuaturien N (2013) Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. J Mammal 94:1–18.  https://doi.org/10.1371/journal.pone.0014509 CrossRefGoogle Scholar
  113. Strait SG (1993) Differences in occlusal morphology and molar size in frugivores and faunivores. J Hum Evol 25:471–484CrossRefGoogle Scholar
  114. Strauss RE (2010) Discriminating groups of organisms. In: Elewa AMT (ed) Morphometric for Nonmorphometricians. Springer, Heidelberg, pp 73–91CrossRefGoogle Scholar
  115. Sunquist ME, Sunquist FC (2009) Family Felidae (cats). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 54–169Google Scholar
  116. Taylor RJ (1986) Notes on the diet of the carnivorous mammals of the Upper Henty River region, western Tasmania. Pap Proc R Soc Tasmania 120:7–10Google Scholar
  117. Thompson EN, Biknevicius AR, German RZ (2003) Ontogeny of feeding function in the gray short-tailed opossum Monodelphis domestica: empirical support for the constrained model of jaw biomechanics. J Exp Biol 206:923–932.  https://doi.org/10.1242/jeb.00181 PubMedCrossRefGoogle Scholar
  118. Torre I, Ballesteros T, Degollada A (2003) Changes in the diet of the genet (Genetta genetta Linnaeus, 1758) in relation to small mammal-prey availability: possible choice of the bank vole? Galemys 15:25–36Google Scholar
  119. Ungar PS (2010) Mammal Teeth: Origin, Evolution, and Diversity. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  120. van Nievelt AFH, Smith KK (2005) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31:324–346. https://doi.org/10.1666/0094-8373(2005)031[0324:TRONTR]2.0.CO;2Google Scholar
  121. Van Valkenburgh B (1989) Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Vol. 1. Springer US, New York, pp 410–436CrossRefGoogle Scholar
  122. Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47:147–163.  https://doi.org/10.1093/icb/icm016 PubMedCrossRefGoogle Scholar
  123. Van Valkenburgh B, Koepfli K-P (1993) Cranial and dental adaptations to predation in canids. Symp Zool Soc Lond 65:15–37Google Scholar
  124. Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edition. Springer, New YorkGoogle Scholar
  125. Vieira EM, Astúa de Moraes D (2003) Carnivory and insectivory in Neotropical marsupials. In: Jones ME, Dickman CR, Archer M (eds) Predators with Pouches. CSIRO Publishing, Collingwood, pp 271–284Google Scholar
  126. Werdelin L (1986) Comparison of skull shape in marsupial and placental carnivores. Aust J Zool 34:109–117 .  https://doi.org/10.1071/ZO9860109 CrossRefGoogle Scholar
  127. Werdelin L (1987) Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13:342–350CrossRefGoogle Scholar
  128. Westerman M, Krajewski C, Kear BP, Meehan L, Meredith RW, Emerling CA, Springer MS (2016) Phylogenetic relationships of dasyuromorphian marsupials revisited. Zool J Linn Soc 176:686–701.  https://doi.org/10.1111/zoj.12323 CrossRefGoogle Scholar
  129. Wilson DE (2009) Class Mammalia (mammals). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 17–47Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sergio D. Tarquini
    • 1
    Email author
  • M. Amelia Chemisquy
    • 1
    • 2
  • Francisco J. Prevosti
    • 1
    • 2
  1. 1.Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR – Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET)AnillacoArgentina
  2. 2.Departamento de Ciencias Exactas, Fisicas y NaturalesUniversidad Nacional de la Rioja (UNLaR)La RiojaArgentina

Personalised recommendations