Advertisement

Journal of Mammalian Evolution

, Volume 26, Issue 4, pp 447–478 | Cite as

Reigitherium (Meridiolestida, Mesungulatoidea) an Enigmatic Late Cretaceous Mammal from Patagonia, Argentina: Morphology, Affinities, and Dental Evolution

  • Tony Harper
  • Ana Parras
  • Guillermo W. RougierEmail author
Original Paper

Abstract

New dental and dentary fossils collected in the Upper Cretaceous La Colonia Formation in central Patagonia provide new evidence on the morphology, feeding ecology, and relationships of the enigmatic mammal Reigitherium. The newly discovered specimens described here include elements of the upper dentition and several partial dentaries, elucidating fundamental questions of serial homology and postcanine dental formula (four premolars and three molars). This new evidence supports a nested position of Reigitherium within the advanced meridiolestidan clade Mesungulatoidea. Apomorphic features of the upper and lower molariform elements include intense enamel crenulation circumscribed within the primary trigon and trigonid, elevated cingulids, and the neomorphic appearance of cusps/cuspulids, all of which increase overall crown complexity. A Dental Topography Analysis comparing Reigitherium and its sister taxon Peligrotherium to Cretaceous and Cenozoic therians demonstrates functional similarity between the mesungulatoids and South American marsupial taxa that succeed them in the small-to medium-sized herbivore niche during the Paleocene. Previous taxonomic attributions of Reigitherium are discussed and comparisons with other meridiolestidans highlight the remarkable radiation of this group in the Cretaceous of South America.

Keywords

Reigitherium Meridiolestida Dental complexity Mesozoic Mammalia 

Notes

Acknowledgments

We would like to thank Dr. Rubén Cúneo, Leandro Canessa, and other personnel of the Museo Paleontológico Egidio Feruglio, Chubut, Argentina for years of support. We are additionally grateful to David Archibald and Ken Rose for their deep insight into mammalian evolution and access to the therian comparative specimens used here, and Patrick Luckett for helpful comments on dental homology and proofreading early drafts of the manuscript. Tim Phelps and the other faculty at Johns Hopkins University Department of Art as Applied to Medicine provided expert input and guidance to TH in the production of illustrations, and Justin Gladman and Doug Boyer at Duke University’s Shared Materials and Instrumentation Facility (SMIF) graciously contributed access and assistance with the high quality imaging required for the description of small enigmatic mammalian fossils, for which we are also very grateful. We would also like to thank Dr. Alejandro Karmarz for access to the collections of Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina, and intellectual and material support through the years. Finally, we thank Rosío B. Vera for her diligent assistance in picking through La Colonia sediments. This research was supported by NSF via the DEB 0946430 and DEB 1068089 grants (to GWR), USA, and by the RAICES program (PICT-2016-3682), Agencia de Investigación Cientifica, CONICET, Argentina.

Supplementary material

10914_2018_9437_MOESM1_ESM.pdf (49 kb)
Online Resource 1 Tables listing new La Colonia specimens described in text, and the therian comparative sample used in the reported Dental Topography Analysis (DTA) (PDF 48 kb)
10914_2018_9437_MOESM2_ESM.nex (7 kb)
Online Resource 2 Character matrix used in Maximum Parsimony and Bayesian analyses described in text (NEX 6 kb)

References

  1. Andreis RR (1987) The Late Cretaceous fauna of Los Alamitos, Patagonia Argentina. I. Stratigraphy and paleoenviroments. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 3:103–110Google Scholar
  2. Andreis RR, Bensel CA, Rial G (1989) La transgression marina del Cretácico Tardío en el borde SE de la Meseta de Somuncurá, Río Negro, Patagonia Septentrional, Argentina. In: Contribuciones de los Simposios sobre el Cretácico de América Latina, Parte A: Eventos y Registros Sedimentarios, pp 165–194Google Scholar
  3. Archibald JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mammal Evol 8:107–124Google Scholar
  4. Archibald JD, Averianov AO (2003) The Late Cretaceous placental mammal Kulbeckia. J Vertebr Paleontol 23:404–419Google Scholar
  5. Archibald JD, Averianov AO (2012) Phylogenetic analysis, taxonomic revision, and dental ontogeny of the Cretaceous Zhelestidae (Mammalia: Eutheria). Zool Linn Soc 164:361–426Google Scholar
  6. Ardolino A, Delpino D (1987) Senoniano (continental-marino) Comarca Nordpatagónica, Provincia del Chubut, Argentina. X Congreso Geológico Argentino (Tucumán) Actas 3: 193–196Google Scholar
  7. Ardolino A, Franchi M (1996) Hoja geológica 4366 - I Telsen. Provincia del Chubut. Programa Nacional de Cartas Geológicas de la República Argentina, escala 1:250.000. Dirección Nacional del Servicio Geológico, Buenos Aires, Boletín 215, 110 ppGoogle Scholar
  8. Averianov AO, Martin T, Lopatin AV (2013) A new phylogeny for the basal Trechnotheria and Cladotheria and affinities of the South American endemic Late Cretaceous mammals. Naturwissenschaften 100:311–326PubMedGoogle Scholar
  9. Bonaparte JF (1986) Sobre Mesungulatum houssayi y nuevos mamíferos Cretácicos de Patagonia, Argentina. Actas IV Congreso Argentino de Paleontología y Bioestratigrafía 2:48–61Google Scholar
  10. Bonaparte J (1990) New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Geogr Res 6:63–93Google Scholar
  11. Bonaparte JF (1994) Approach to the significance of the Late Cretaceous mammals of South America. Berliner geowissensch Abh 13:1–44Google Scholar
  12. Bonaparte JF, Migale LA (2010) Protomamíferos y Mamíferos Mesozoicos de América del Sur. Museo de Ciencias Naturales Carlos Ameghino, Buenos AiresGoogle Scholar
  13. Bonaparte JF, Van Valen LM, Kramartz A (1993) La fauna local de Punta Peligro, Paleoceno inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol Monogr 14:1–61Google Scholar
  14. Boyer DM (2008) Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. J Hum Evol 55:1118–1137.PubMedGoogle Scholar
  15. Bunn JM, Boyer DM, Lipman Y, St Clair EM, Jernvall J, Daubechies I (2011) Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. Am J Phys Anthropol 145:247–261PubMedGoogle Scholar
  16. Butler PM (1939) Studies of the mammalian dentition–differentiation of the post-canine dentition. J Zool 109:1–36Google Scholar
  17. Butler PM (1948) On the evolution of the skull and teeth in the Erinaceidae, with special reference to fossil material in the British Museum. J Zool 118:446–500Google Scholar
  18. Butler PM (1997) An alternative hypothesis on the origin of docodont molar teeth. J Vertebr Paleontol 17:435–439Google Scholar
  19. Cúneo NR, Gandolfo MA, Zamaloa MC, Hermsen E (2014) Late Cretaceous Aquatic Plant World in Patagonia, Argentina. PLoS One 9:1–18Google Scholar
  20. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack, KA (eds) Early Mammals. Zool J Linn Soc 50: 65–87Google Scholar
  21. Crompton AW, Kielan-Jaworowska Z (1978) Molar structure and occlusion in Cretaceous therian mammals. In: Butler PM, Joysey KA (eds) Development, Function and Evolution of Teeth. Academic Press, London, pp 249–287Google Scholar
  22. Crompton AW, CB Wood, Stern DN (1994) Differential wear of enamel: a mechanism for maintaining sharp cutting edges. In: Bels VL, Chardon M, Vandewalle P (eds) Biomechanics of Feeding in Vertebrates. Springer, Berlin, pp 321–346Google Scholar
  23. Datta PM (2005) Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J Vertebr Paleontol 25:200–207Google Scholar
  24. Davis BM (2011) Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J Mammal Evol 18:227–244Google Scholar
  25. Davis BM (2012) Micro-computed tomography reveals a diversity of Peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology 55:789–817Google Scholar
  26. Drummond AJ, Bouckaert RR (2015) Bayesian Evolutionary Analysis with BEAST. Cambridge University Press, CambridgeGoogle Scholar
  27. Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81PubMedGoogle Scholar
  28. Forasiepi AM, Coria RA, Hurum J, Currie PJ (2012) First dryolestoid (Mammalia, Dryolestoidea, Meridiolestida) from the Coniacian of Patagonia and new evidence on their early radiation in South America. Ameghiniana 49:497–504Google Scholar
  29. Gasparini Z, Sterli J, Parras A, O’Gorman JP, Salgado L, Varela J, Pol D (2015) Late Cretaceous reptilian biota of the La Colonia Formation, Central Patagonia, Argentina: occurrences, preservation and paleoenvironments. Cret Res 54:154–168Google Scholar
  30. Gayet M, Marshall LG, Sempere T, Meunier FJ, Cappetta H, Rage JC (2001). Middle Maastrichtian vertebrates (fishes, amphibians, dinosaurs and other reptiles, mammals) from Pajcha Pata (Bolivia). Biostratigraphic, palaeoecologic and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 169:39–68Google Scholar
  31. Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23:369–379Google Scholar
  32. Goin FJ, Woodburne MO, Zimicz AN, Martin GM, Chornogubsky L (2016) A Brief History of South American Metatherians. Springer, HeidelbergGoogle Scholar
  33. Gould SJ (2002) The Structure of Evolutionary Theory. Harvard University Press, CambridgeGoogle Scholar
  34. Guler MV, Borel CM, Brinkhuis H, Navarro E, Astini R (2014) Brackish to freshwater dinoflagellate cyst assemblages from the La Colonia Formation (Paleocene?), northeastern Patagonia, Argentina. Ameghiniana 51:141–153Google Scholar
  35. Grossnickle DM, Polly PD (2013) Mammal disparity decreases during the Cretaceous angiosperm radiation. Proc R Soc Lond B 280:20132110Google Scholar
  36. Grossnickle DM, Newham E (2016). Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc R Soc Lond B 283: 20160256Google Scholar
  37. Halliday TJD, Goswami A (2016) Eutherian morphological disparity across the end-Cretaceous mass extinction. Biol J Linn Soc 118:152–168Google Scholar
  38. Hershkovitz P (1971) Basic crown patterns and cusp homologies of mammalian teeth. In: Dahlberg AA (ed) Dental Morphology and Evolution. University of Chicago Press, Chicago, pp 95–150Google Scholar
  39. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedGoogle Scholar
  40. Hugo CA, Leanza HA (2001) Hoja geológica 3969-IV, general roca. Provincias de Río Negro y Neuquén. Boletín Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales 308:1–65Google Scholar
  41. Hunter JP, Jernvall J (1995) The hypocone as a key innovation in mammalian evolution. Proc Natl Acad Sci USA 92:10718–10722PubMedGoogle Scholar
  42. Janis CM (1990) The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In: Boucot AJ (ed) Paleobiological Evidence for Rates of Coevolution and Behavioral Evolution. Elsevier, New York, pp 241–259Google Scholar
  43. Jernvall J, Hunter JP, Fortelius M (1996) Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:1489–1492PubMedGoogle Scholar
  44. Kay RF, Hiiemae KM (1974) Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol 40:227–256PubMedGoogle Scholar
  45. Kielan-Jaworowska Z, Cifelli RL, Luo ZX (2004) Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New YorkGoogle Scholar
  46. Lester KS, Koenigswald W von (1989) Crystallite orientation discontinuities and the evolution of mammalian enamel--or, when is a prism? Scanning microscopy 3:645–662Google Scholar
  47. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925PubMedGoogle Scholar
  48. Lopatin A, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol Pol 52:441–446Google Scholar
  49. Lucas PW (2004) Dental Functional Morphology: How Teeth Work. Cambridge University Press, CambridgeGoogle Scholar
  50. Luckett WP (1993) An ontogenetic assessment of dental homologies in therian mammals. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer, New York, pp 182–204Google Scholar
  51. Luo ZX, Martin T (2007) Analysis of molar structure and phylogeny of docodont genera. Bull Carnegie Mus Nat Hist 39:27–47Google Scholar
  52. Malumián N, Caramés A (1995) El Daniano marino de Patagonia (Argentina): Paleobiogeografía de los foraminíferos bentónicos. In: Náñez C (ed) Paleógeno de América del Sur. Asociación Paleontológica Argentina, Publicación Especial 3, Buenos Aires, pp 83–105Google Scholar
  53. Martin T, Goin, F, Chornogubsky L, Gelfo J, Shultz J (2013) Early Late Cretaceous (Cenomanian) mammals and other vertebrates from the Mata Amarilla Formation of southern Patagonia (Argentina). Soc Vertebr Paleontol Annual Meeting AbstractsGoogle Scholar
  54. McDowell SB (1958) The Greater Antillean insectivores. Bull Am Mus Nat Hist 115:113–214Google Scholar
  55. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett, WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46Google Scholar
  56. Mills JRE (1964) The dentitions of Peramus and Amphitherium. Proc Linn Soc Lond 175:117–133Google Scholar
  57. Moore WJ (1981) The Mammalian Skull. Cambridge University Press, CambridgeGoogle Scholar
  58. O’Gorman JP, Salgado L, Varela J, Parras A (2013) Elasmosaurs (Sauropterygia, Plesiosauria) from La Colonia Formation (Campanian-Maastrichtian), Argentina. Alcheringa 37:259–267Google Scholar
  59. Paez-Arango N (2008) Dental and craniomandibular anatomy of Peligrotherium tropicalis: the evolutionary radiation of South American dryolestoid mammals. Dissertation, University of LouisvilleGoogle Scholar
  60. Page R, Ardolino A, de Barrio RE, Franchi M, Lizuain A, Page S, Silva Nieto D (1999) Estratigrafía del Jurásico y Cretácico del Macizo de Somún Curá, provincias de Río Negro y Chubut. In: Caminos R (ed) Geología Argentina. Servicio Geológico Minero Argentino SEGEMAR Anales 29, Buenos Aires, pp 460–488Google Scholar
  61. Pampush JD, Winchester JM, Morse PE, Vining AQ, Boyer DM, Kay RF (2016) Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). J Mammal Evol 23:397–412Google Scholar
  62. Pascual R, Goin FJ, González P, Ardolino A, Puerta PF (2000) A highly derived docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22:395–414Google Scholar
  63. Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana Geol 13:1–105Google Scholar
  64. Pesce AH (1979) Estratigrafía del arroyo Perdido en su tramo medio e inferior provincia del Chubut. VII Congreso Geológico Argentino (Neuquén, 1978), Actas 1:315–333Google Scholar
  65. Prasad GVR, Manhas BK (2001) First docodont mammals of Laurasian affinities from India. Curr Sci 81:1235–1238Google Scholar
  66. Prasad, GVR, Manhas BK (2007) A new docodont mammal from the Jurassic Kota Formation of India. Palaeontol Electronica 11:1–11Google Scholar
  67. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167:277–326Google Scholar
  68. Rensberger JM (1973) An occlusal model for mastication and dental wear in herbivorous mammals. J Paleontol 47:515–528Google Scholar
  69. Riccardi AC (1987) Cretaceous paleogeography of southern South America. Palaeogeogr Palaeoclimatol Palaeocol 59:169–195Google Scholar
  70. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S,Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedPubMedCentralGoogle Scholar
  71. Rose KD (2006) The Beginning of the Age of Mammals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  72. Rougier GW, S Apesteguía (2004) The Mesozoic radiation of dryolestoids in South America: dental and cranial evidence. J Vertebr Paleontol 24 (Suppl to No 3):106AGoogle Scholar
  73. Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102PubMedGoogle Scholar
  74. Rougier GW, Chornogubsky L, Casadio S, Arango NP, Giallombardo A (2009a) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cret Res 30:223–238Google Scholar
  75. Rougier GW, Forasiepi AM, Hill RV, Novacek M (2009b) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Palaeontol Pol 54:195–212Google Scholar
  76. Rougier GW, Leandro G, Drury BR, Colella R, Gomez RO, Arango NP, Calvo J, Porri J, Gonzalez Riga B, Dos Santos D (2010) A review of the Mesozoic mammalian record of South America. In: Calvo J, Porri J, B. Gonzalez Riga B, Dos Santos D (eds) Paleontologia y dinosaurios desde America Latina. Universidad Nacional de Cuyo, Mendoza, pp 195–214Google Scholar
  77. Rougier GW, Wible JR, Beck RM, Apesteguía S (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Natl Acad Sci USA 109:20053–20058PubMedGoogle Scholar
  78. Schultz JA, T Martin (2011) Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontol Z 85:269–285Google Scholar
  79. Sigé B, Sempere T, Butler RF, Marshall LG, Crochet JY (2004) Age and stratigraphic reassessment of the fossil-bearing Laguna Umayo red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and paleomagnetism. Geobios 37:771–794.Google Scholar
  80. Sigogneau-Russell D (2003) Docodonts from the British Mesozoic. Acta Palaeontol Pol 48:357–374.Google Scholar
  81. Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London, pp 1–215Google Scholar
  82. Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus 3:1–235Google Scholar
  83. Spradley JP, Pampush JD, Morse PE, Kay RF (2017) Smooth operator: the effects of different 3D mesh retriangulation protocols on the computation of Dirichlet normal energy. Am J Phys Anthropol 163:94–109PubMedGoogle Scholar
  84. Suárez M, Márquez M, De La Cruz R, Navarrete C, Fanning M (2014) Cenomanian-?Early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology. J So Am Earth Sci 50:67–74Google Scholar
  85. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4. Sinauer Associates, SunderlandGoogle Scholar
  86. Wible JR, Rougier GW (2017) Craniomandibular anatomy of the subterranean meridiolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the early Miocene of Patagonia. Ann Carnegie Mus 84:183–252Google Scholar
  87. Wilf P, NR Cúneo, IH Escapa, D Pol, MO Woodburne (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu Rev Earth Planet Sci 41:561–603Google Scholar
  88. Wilson GP, Evans AR, Corfe IJ, Smits PD, Fortelius M, Jernvall J (2012) Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483:457–460PubMedGoogle Scholar
  89. Wood CB, Dumont ER, Crompton AW (1999) New studies of enamel microstructure in Mesozoic mammals: a review of enamel prisms as a mammalian synapomorphy. J Mammal Evol 6:177–213Google Scholar
  90. Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mammal Evol 12:433–460Google Scholar
  91. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Inglesias A, Zimicz AN (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mammal Evol 21:1–73Google Scholar
  92. Vandebroek G (1961) The comparative anatomy of the teeth of lower and non-specialized mammals. Kon Vlaamse Acad Wetensch Lett Sch Kunsten Belgie 1:1–215Google Scholar
  93. Varela JA, Parras A (2013) Análisis tafonómico de una concentración de vertebrados en la Formación La Colonia (Cretácico Tardío), Chubut, Argentina. Reunión Anual de Comunicaciones de la APA (Córdoba). Ameghiniana 50:74–75Google Scholar
  94. Yardeni J (1942) Facts and fancy in dental morphogenesis. Am J Orthodont Oral Surg 28:725–735Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tony Harper
    • 1
  • Ana Parras
    • 2
  • Guillermo W. Rougier
    • 3
    Email author
  1. 1.Center for Functional Anatomy and EvolutionJohns Hopkins UniversityBaltimoreUSA
  2. 2.INCITAP (CONICET-UNLPam), Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La PampaSanta RosaArgentina
  3. 3.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations