Advertisement

Journal of Mammalian Evolution

, Volume 26, Issue 4, pp 505–515 | Cite as

A Dental Microwear Texture Analysis of the Early Pliocene African Ursid Agriotherium africanum (Mammalia, Carnivora, Ursidae)

  • Deano D. StynderEmail author
  • Larisa R. G. DeSantis
  • Shelly L. Donohue
  • Blaine W. Schubert
  • Peter S. Ungar
Original Paper

Abstract

The craniodental morphology of the early Pliocene ursid Agriotherium africanum has been studied extensively to reveal aspects of its dietary ecology. Results suggest that this large-bodied, long-legged, short-faced African native primarily consumed vertebrate matter. While many carnivoran families exhibit a clear functional relationship between craniodental form and performance on the one hand, and dietary behavior on the other, this is not always the case with Ursidae. Because of uncertainties regarding the appropriateness of using craniodental form to investigate ursid diets, questions still linger about the dietary ecology of Ag. africanum. Here, we report on a dental microwear texture analysis of six Ag. africanum lower second molars from the South African fossil site of Langebaanweg. Results support morphological evidence that suggests a diet focused on vertebrate soft tissue and bone. Unfortunately, results cannot clarify questions about mode of acquisition.

Keywords

Mammalia Ursidae Dental microwear textures Early Pliocene South Africa 

Notes

Acknowledgments

This work is based on research supported in part by the National Research Foundation of South Africa (Grant Number 103807 provided to Stynder, University of Cape Town). It is also supported by the National Science Foundation of the USA (Grant Number 1053839 provided to DeSantis, Vanderbilt University). We would like to thank Romala Govender for access to the Agriotherium africanum material under her curatorship at Iziko, The South African Museum.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Anyonge W (1996) Microwear on canines and killing behavior in large carnivores: saber function in Smilodon fatalis. J Mammal 77: 1059–1067Google Scholar
  2. Arman S, Prideaux G, Ungar P, Brown C, DeSantis L, Schmidt C (2015) Intra- and inter-microscope differences in dental microwear texture analysis. J Vertebr Paleontol Program and Abstracts 2015: 81Google Scholar
  3. Arman SD, Ungar PS, Brown CA, DeSantis LRG, Schmidt C, Prideaux GJ (2016) Minimizing inter-microscope variability in dental microwear analysis. Surf Topogr: Metrol Prop 4: 024007Google Scholar
  4. Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A (2002) Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295: 2267–2270PubMedGoogle Scholar
  5. Bocherens H (2009) Dental microwear of cave bears: the missing temperate/boreal vegetarian “carnivore.” Proc Natl Acad Sci USA 106 (48): E133PubMedGoogle Scholar
  6. Bocherens H, Billiou D, Patou-Mathis M, Bonjean D, Otte M, Mariotti A (1997) Paleobiological implications of the isotopic signature (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quaternary Res 48: 370–380Google Scholar
  7. Bocherens H, Drucker D, Billiou D, Geneste J, van der Plicht J (2006) Bears and humans in Chauvet cave (Vallon-Pont-d’Arc, Ardèche, France): insights from stable isotopes and radiocarbon dating of bone collagen. J Hum Evol 50: 370–376PubMedGoogle Scholar
  8. Bocherens H, Emslie SD, Billiou D, Mariotti A (1995) Stable isotopes (13C,15N) and paleodiet of the giant short-faced bear (Arctodus simus). CR Acad Sci 320: 779–784Google Scholar
  9. Bocherens H, Fizet M, Mariotti A (1993) Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeogr Palaeoclimatol Palaeoecol 107: 213–225Google Scholar
  10. Burgman JHE, Leichliter J, Avenant NL, Ungar PS (2016) Dental microwear of sympatric rodent species sampled across habitats in southern Africa: implications for environmental influence. Integr Zool 11: 111–127PubMedGoogle Scholar
  11. Calandra I, Göhlich UB, Merceron G (2008) How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95: 831–838PubMedGoogle Scholar
  12. Caporale SS, Ungar PS (2016) Rodent incisor microwear as a proxy for ecological reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 446: 225–233Google Scholar
  13. Christiansen P (2007) Evolutionary implications of bite mechanics and feeding ecology in bears. J Zool 272: 423–443Google Scholar
  14. Christiansen P (2008) Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS One 3(7): e2807PubMedPubMedCentralGoogle Scholar
  15. Christiansen P, Wroe S (2007) Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88: 347–358PubMedGoogle Scholar
  16. Craighead JJ, Mitchell JA (1982) Grizzly Bear, Ursus arctos. In: Chapman JA, Feldhamer GA (eds) Wild Mammals of North America: Biology, Management, and Economics. Johns Hopkins University Press, Baltimore, pp 515–556Google Scholar
  17. Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zool 3: 1–339Google Scholar
  18. DeSantis LRG (2016) Dental microwear textures: reconstructing the diets of fossil mammals. Surf Topogr: Metrol Prop 4: 023002Google Scholar
  19. DeSantis LRG, Haupt RJ (2014) Cougars’ key to survival through the late Pleistocene extinction: insights from dental microwear texture analysis. Biol Lett 10 (4): 20140203PubMedPubMedCentralGoogle Scholar
  20. DeSantis LRG, Patterson BD (2017) Dietary behaviour of man-eating lions as revealed by dental microwear textures. Sci Rep-UK 7: 904Google Scholar
  21. DeSantis LRG, Schubert BW, Schmitt-Linville E, Ungar PS, Donohue SL, Haupt RJ (2015) Dental microwear textures of carnivorans from the La Brea Tar Pits, California, and potential extinction implications. In: Harris JM (ed) La Brea and Beyond: the Paleontology of Asphalt-preserved Biotas 42. Allen Press, Lawrence, pp 37–52Google Scholar
  22. DeSantis LRG, Schubert BW, Scott JR, Ungar PS (2012) Implications of diet for the extinction of saber-toothed cats and American lions. PLoS One 7 (12): e52453PubMedPubMedCentralGoogle Scholar
  23. DeSantis LRG, Scott JR, Schubert BW, Donohue SL, McCray BM, Van Stolk CA, Winburn AA, Greshko MA, O’Hara MC (2013) Direct comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS One 8 (8): e71428PubMedPubMedCentralGoogle Scholar
  24. DeSantis LRG, Tseng ZJ, Liu J, Hurst A, Schubert BW, Jiangzuo Q (2017) Assessing niche conservatism using a multiproxy approach: dietary ecology of extinct and extant spotted hyenas. Paleobiology 43(2): 286–303Google Scholar
  25. Donohue SL, DeSantis LRG, Schubert BW, Ungar PS (2013) Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS One 8 (10): e77531PubMedPubMedCentralGoogle Scholar
  26. Figueirido B, Palmqvist P, Pérez-Claros JA (2009) Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. J Zool 277: 70–80Google Scholar
  27. Figueirido B, Pérez-Claros JA, Torregrosa V, Martín-Serra A, Palmqvist P (2010) Demythologizing Arctodus simus, the ‘short-faced’ long-legged and predaceous bear that never was. J Vertebr Paleontol 30: 262–275Google Scholar
  28. Figueirido B, Pérez-Ramos A, Schubert BW, Serrano F, Farrell AB, Pastor FJ, Neves AA, Romero A (2017) Dental caries in the fossil record: a window to the evolution of dietary plasticity in an extinct bear. Sci Rep 7 (1):17813PubMedPubMedCentralGoogle Scholar
  29. Figueirido B, Tseng ZJ, Serrano-Alarcón FJ, Martín-Serra A, Pastor JF (2014) Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning. Biol Letters 10 (4): 20140196Google Scholar
  30. Goillot C, Blondel C, Peigne S (2009) Relationships between dental microwear and diet in Carnivora (Mammalia) - implications for the reconstruction of the diet of extinct taxa. Palaeogeogr Palaeoclimatol Palaeoecol 271:13–23Google Scholar
  31. Grine FE (1986) Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. J Hum Evol 15: 783–822Google Scholar
  32. Grine FE, Daegling (2017) Functional morphology, biomechanics and the retrodiction of early hominin diets. CR Palevol 16: 613–631Google Scholar
  33. Grine FE, Ungar PS, Teaford MF (2002) Error rates in dental microwear quantification using scanning electron microscopy. Scanning 24: 144–153PubMedGoogle Scholar
  34. Haupt RJ, DeSantis LRG, Green JL, Ungar PS (2013) Dental microwear texture as a proxy for diet in xenarthrans. J Mammal 94(4): 856–866Google Scholar
  35. Hedberg C, DeSantis LRG (2017) Dental microwear texture analysis of extant koalas: clarifying causal agents of microwear. J Zool 301 (3): 206–214Google Scholar
  36. Hendey QB (1972) A Pliocene ursid from South Africa. Ann S Afr Mus 59: 115–132Google Scholar
  37. Hendey QB (1974) The late Cenozoic Carnivora of the south-western Cape Province. Ann S Afr Mus 63: 1–369Google Scholar
  38. Hendey QB (1977) Fossil bear from South Africa. S Afr J Sci 73: 112–116Google Scholar
  39. Hendey QB (1980) Agriotherium (Mammalia, Ursidae) from Langebaanweg, South Africa, and relationships of the genus. Ann S Afr Mus 81: 1–109Google Scholar
  40. Jin C, Ciochon RL, Dong W, Hunt RM, Liu J, Jaeger M, Zhu Q (2007) The first skull of the earliest giant panda. Proc Natl Acad Sci USA 104: 10932–10937PubMedGoogle Scholar
  41. Jones BD, DeSantis LRG (2016) Dietary ecology of the extinct cave bear: evidence of omnivory as inferred from dental microwear textures. Acta Palaeontol Pol 61 (4): 735–741Google Scholar
  42. Jones DB, DeSantis LRG (2017) Dietary ecology of ungulates from the La Brea tar pits in southern California: a multi-proxy approach. Palaeogeogr Palaeoclimatol Palaeoecol 466: 110–127Google Scholar
  43. Koby FE (1940) Les usures séniles des canines d’Ursus spelaeus et la préhistoire. Verhandlungen der naturforschenden Gesellschaft 51: 76–95Google Scholar
  44. Kurtén B (1967) Pleistocene bears of North America, II: Genus Arctodus, short-faced bears. Acta Zool Fenn 117: 1–60Google Scholar
  45. Kurtén B (1976) The Cave Bear Story. Columbia University Press, New YorkGoogle Scholar
  46. Kurtén B, Anderson E (1980) Pleistocene Mammals of North America. Columbia University Press, New York, 442 ppGoogle Scholar
  47. Lucas PW, Teaford MF (1994) Functional morphology of colobine teeth. In: Davies AG, Oates JF (eds) Colobine Monkeys: Their Ecology, Behaviour and Evolution. Cambridge University Press, Cambridge, pp 173–203Google Scholar
  48. Matheus P (1995) Diet and co-ecology of Pleistocene short-faced bears and brown bears in eastern Beringia. Quaternary Res 44: 447–453Google Scholar
  49. Meachen-Samuels J, Van Valkenburgh B (2009) Cranial indicators of prey size preference in the Felidae. Biol J Linn Soc 96 (4): 784–799Google Scholar
  50. Meiri S, Dayan T, Simberloff D (2005) Variability and correlations in carnivore crania and dentition. Func Ecol 19 (2): 337–343Google Scholar
  51. Merceron G, Blondel C, Brunet M, Sen S, Solounias N, Viriot L, Heintz E (2004) The late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeogr Palaeoclimatol Palaeoecol 207: 143–163Google Scholar
  52. Merceron G, Blondel C, Viriot L, Koufos GD, de Bonis L (2005a) A new method of dental microwear analysis: application to extant primates and Ouranopithecus macedoniensis (late Miocene of Greece). Palaios 20: 551–561Google Scholar
  53. Merceron G, de Bonis L, Viriot L, Blondel C (2005b) Dental microwear of fossil bovids from northern Greece: paleoenvironmental conditions in the eastern Mediterranean during the Messinian. Palaeogeogr Palaeoclimatol Palaeoecol 217: 173–185Google Scholar
  54. Merceron G, Escarguel G, Angibault J-M, Verheyden-Texier H (2010a) Can dental microwear textures record inter-individual dietary variations? PLoS One 5: 9542Google Scholar
  55. Merceron G, Kaiser, TM, Kostopoulos DS, Schulz E (2010b) Ruminant diets and the Miocene extinction of European great apes. Proc R Soc B-Biol Sci 277: 3105–3112Google Scholar
  56. Merceron G, Hofman-Kamińska E, Kowalczyk R (2014) 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Białowieża Primeval Forest, Poland. Forest Ecol Manag 328: 262–269Google Scholar
  57. Merceron G, Ungar P (2005) Dental microwear and palaeoecology of bovids from the early Pliocene of Langebaanweg, western Cape Province, South Africa. S Afr J Sci 101: 365–370Google Scholar
  58. Oldfield CC, McHenry CR, Clausen PD, Chamoli U, Parr WCH, Stynder DD, Wroe S (2012) Finite element analysis of ursid cranial mechanics and the prediction of feeding behaviour in the extinct giant Agriotherium africanum. J Zool 286: 93–171Google Scholar
  59. Peigné S, Goillot C, Germonpré M, Blondel C, Bignon O, Merceron G (2009) Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proc Natl Acad Sci USA 106 (36): 15390–15393PubMedGoogle Scholar
  60. Pelton MR (1993) The American black bear. In: Stirling I (ed) Bears: Majestic Creatures of the Wild. Rodale Press, Emmaus, pp 108115Google Scholar
  61. Peyton B (1980) Ecology, distribution, and food habits of spectacled bears, Tremarctos ornatus, in Peru. J Mammal 61: 639652Google Scholar
  62. Pinto Llona AC (2006) Comparative dental microwear analysis of cave bears Ursus spelaeus Rosenmüller, 1974 and brown bears Ursus arctos Linnaeus, 1758. Sci Ann Sch Geol Aristot Univ Thessalon 98:103–108Google Scholar
  63. Pinto-Llona AC (2013) Macrowear and occlusal microwear on teeth of cave bears Ursus spelaeus and brown bears Ursus arctos: inferences concerning diet. Palaeogeogr Palaeoclimatol Palaeoecol 370: 41–50Google Scholar
  64. Prideaux GJ, Ayliffe LK, DeSantis LRG, Schubert BW, Murray PF, Gagan MK, Cerling TE (2009) Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc Natl Acad Sci USA 106: 11646–11650PubMedGoogle Scholar
  65. Purnell MA, Crumpton N, Gill PG, Jones G, Rayfield EJ (2013) Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. J Zool 291: 249–257Google Scholar
  66. Rafferty K, Teaford MF (1992) Diet and dental microwear in Malagasy subfossil lemurs. Am J Phys Anthropol Suppl 14: 134Google Scholar
  67. Reid DG (1993) The Asiatic black bear. In: Stirling I (ed) Bears: Majestic Creatures of the Wild. Rodale Press, Emmaus, pp 118–123Google Scholar
  68. Rensberger JM (1978) Scanning electron microscopy of wear and occlusal events in some small herbivores. In: Butler PM, Joysey KA (eds) Development, Function, and Evolution of Teeth. Academic Press, New York, pp 415–438Google Scholar
  69. Richards M, Pacher M, Stiller M, Quilès J, Hofreiter M, Constantin S, Zilhão J, Trinkaus E (2008) Isotopic evidence for omnivory among European cave bears: late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proc Natl Acad Sci USA 105: 600–604PubMedGoogle Scholar
  70. Rivals F, Deniaux B (2003) Dental microwear analysis for investigating the diet of an argali population (Ovis ammon antiqua) of mid−Pleistocene age, Caune de l’Arago cave, eastern Pyrenees, France. Palaeogeogr Palaeoclimatol Palaeoecol 193: 443–455Google Scholar
  71. Ross CF, Iriarte-Diaz J (2014) What does feeding system morphology tell us about feeding? Evol Anthropol 23: 105–120PubMedGoogle Scholar
  72. Sacco T, Van Valkenburgh B (2004) Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zool 263: 41–54Google Scholar
  73. Schubert BW, Ungar PS, DeSantis LRG (2010) Carnassial microwear and dietary behavior in large carnivorans. J Zool 280: 257–263Google Scholar
  74. Schubert B, Ungar PS, Sponheimer M, Reed KE (2006) Microwear evidence for Plio−Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 241: 301–319Google Scholar
  75. Schulz E, Piotrowski V, Clauss M, Mau M, Merceron G, Kaiser TM (2013) Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS One 8: e56167PubMedPubMedCentralGoogle Scholar
  76. Scott JR (2012) Dental microwear texture analysis of extant African Bovidae. Mammalia 76 (2): 159–174Google Scholar
  77. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Childs BE, Teaford MF, Walker A (2006) Dental microwear texture analysis: technical considerations. J Hum Evol 51: 339–349PubMedGoogle Scholar
  78. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Grine FE, Teaford MF, Walker A (2005) Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436: 693–695PubMedGoogle Scholar
  79. Scott JR, Ungar PS, Jungers WL, Godfrey LR, Scott RS, Simons EL, Teaford MF Walker A (2009) Dental microwear texture analysis of the archaeolemurids and megaladapids, two families of subfossil lemurs from Madagascar. J Hum Evol 56: 405–416PubMedGoogle Scholar
  80. Scott RS, Teaford MF, Ungar PS (2012) Dental microwear texture and anthropoid diets. Am J Phys Anthropol 147 (4): 551–579PubMedGoogle Scholar
  81. Semprebon GM, Godfrey LR, Solounias N, Sutherland MR, Jungers WL (2004) Can low−magnification stereomicroscopy reveal diet? J Hum Evol 47: 115–144PubMedGoogle Scholar
  82. Semprebon GM, Rivals F (2007) Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeogr Palaeoclimatol Palaeoecol 253: 332–347Google Scholar
  83. Servheen C (1993) The sun bear. In: Stirling I (ed) Bears: Majestic Creatures of the Wild. Rodale Press, Emmaus, pp 124–127Google Scholar
  84. Smith TG (1980) Polar bear predation of ringed and bearded seals in the land-fast sea ice habitat. Can J Zool 58: 2201–2209Google Scholar
  85. Solounias N, Moelleken SMC (1993) Tooth microwear and premaxillary shape of an archaic antelope. Lethaia 26: 261–268Google Scholar
  86. Solounias N, Semprebon G (2002) Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am Mus Novitates 3366: 1–49Google Scholar
  87. Solounias N, Teaford M, Walker A (1988) Interpreting the diet of extinct ruminants: the case of a non−browsing giraffid. Paleobiology 14: 287–300Google Scholar
  88. Sorkin B (2006) Ecomorphology of the giant short-faced bears Agriotherium and Arctodus. Hist Biol 18: 1–20Google Scholar
  89. Souron A, Merceron G, Blondel C, Brunetiere N, Colyn M, Hofman-Kaminska E, Boisserie JR (2015) Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia 79: 279–291Google Scholar
  90. Stiner M, Achyuthan H, Arsebuk G, Howell FC, Josephson S, Juell K, Pigati J, Quade J (1998) Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle Pleistocene bears from Yarimburgaz Cave, Turkey. Paleobiology 24: 74–98Google Scholar
  91. Stirling I (1988) Polar Bears. University of Michigan Press, Ann ArborGoogle Scholar
  92. Stynder DD, Kupczik, K (2013) Tooth root morphology in the early Pliocene African bear Agriotherium africanum (Mammalia, Carnivora, Ursidae) and its implications for feeding ecology. J Mammal Evol 20: 227–237Google Scholar
  93. Stynder DD, Ungar PS, Scott JR, Schubert BW (2012) A dental microwear texture analysis of the Mio-Pliocene hyaenids from Langebaanweg, South Africa. Acta Palaeontol Pol 57 (3): 485–496Google Scholar
  94. Tanner JB, Dumont ER, Sakai ST, Lundrigan BL, Holekamp KE (2008) Of arcs and vaults: the biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta). Biol J Linn Soc 95 (2): 246–255.Google Scholar
  95. Taylor ME, Hannam AG (1987) Tooth microwear and diet in the African Viverridae. Can J Zool 65: 1696–1702Google Scholar
  96. Teaford MF, Maas MC, Simons EL (1996) Dental microwear and microstructure in early Oligocene primates from the Fayum, Egypt: implications for diet. Am J Phys Anthropol 101: 527–543PubMedGoogle Scholar
  97. Teaford MF, Walker A (1984) Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. Am J Phys Anthropol 64: 191–200PubMedGoogle Scholar
  98. Ungar PS (1996) Dental microwear of European Miocene catarrhines: evidence for diets and tooth use. J Hum Evol 31: 335–366Google Scholar
  99. Ungar PS (1998) Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol 6: 205–217Google Scholar
  100. Ungar PS, Brown CA, Bergstrom TS, Walkers A (2003) Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25: 185–193PubMedGoogle Scholar
  101. Ungar PS, Grine F E, Teaford MF (2008) Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PloS One 3: e2044PubMedPubMedCentralGoogle Scholar
  102. Ungar PS, Hlusko LJ (2016) The evolutionary path of least resistance. Science 353: 29–30.PubMedGoogle Scholar
  103. Ungar PS, Merceron G, Scott RS (2007) Dental microwear texture analysis of Varswater bovids and early Pliocene paleoecology of Langebaanweg, Western Cape Province, South Africa. J Mammal Evol 14: 163–181Google Scholar
  104. Ungar PS, Scott JR, Schubert BW, Stydner DD (2010) Carnivoran dental microwear textures: comparability of carnassial facets and functional differentiation of postcanine teeth Mammalia 74: 219Google Scholar
  105. Ungar PS, Teaford MF (1996) Preliminary examination of non-occlusal dental microwear in anthropoids: Implications for the study of fossil primates. Am J Phys Anthropol 100: 101–113PubMedGoogle Scholar
  106. Ungar PS, Teaford MF, Kay RF (2004) Molar microwear and shearing crest development in Miocene catarrhines. Anthropologie 42: 21–35Google Scholar
  107. Van Valkenburgh B (1989) Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Chapman and Hall, London, pp 410–436Google Scholar
  108. Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47 (1): 147–163PubMedGoogle Scholar
  109. Van Valkenburgh B, Teaford MF, Walker A (1990) Molar microwear and diet in large carnivores: Inferences concerning diet in the sabertooth cat, Smilodon fatalis. J Zool 222: 319–340Google Scholar
  110. Withnell CB, Ungar PS (2014) A preliminary analysis of dental microwear as a proxy for diet and habitat in shrews. Mammalia 78: 409–415Google Scholar
  111. Wroe S, Brammall J, Cooke B (1998) The skull of Ekaltadeta ima (Marsupialia, Hypsiprymnodontidae?): an analysis of some marsupial cranial features and a reinvestigation of propleopine phylogeny, with notes on the inference of carnivory in mammals. J Paleontol 72: 738–751Google Scholar
  112. Wroe S, McHenry C, Thomason JJ (2005) Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc R Soc B-Biol Sci 272: 619–625Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Deano D. Stynder
    • 1
    Email author
  • Larisa R. G. DeSantis
    • 2
    • 3
  • Shelly L. Donohue
    • 4
  • Blaine W. Schubert
    • 5
  • Peter S. Ungar
    • 6
  1. 1.Department of Archaeology, Faculty of ScienceUniversity of Cape TownRondeboschSouth Africa
  2. 2.Department of Earth and Environmental ScienceVanderbilt UniversityNashvilleUSA
  3. 3.Department of Rancho La BreaLa Brea Tar Pits and MuseumLos AngelesUSA
  4. 4.Department of PaleontologySan Diego Natural History MuseumSan DiegoUSA
  5. 5.Center of Excellence in Paleontology and Department of GeosciencesEast Tennessee State UniversityJohnson CityUSA
  6. 6.Department of AnthropologyUniversity of ArkansasFayettevilleUSA

Personalised recommendations