Journal of Mammalian Evolution

, Volume 26, Issue 4, pp 545–555 | Cite as

Cranial Geometric Morphometric Analysis of the Genus Tapirus (Mammalia, Perissodactyla)

  • Larissa C. C. S. DumbáEmail author
  • Rodrigo Parisi Dutra
  • Mario A. Cozzuol
Original Paper


Tapirs are perissodactyl ungulates of the genus Tapirus. The family Tapiridae was more diverse in the past. Genus Tapirus include five living species: T. indicus, T. pinchaque, T. bairdii, T. terrestris, and T. kabomani. Despite all the information available about tapirs, evolutionary relationships among species within the genus are still uncertain. Recent works suggest that T. terrestris may be a species complex. A better understanding of the evolutionary history of this clade is essential to better support conservation strategies for the species of this genus, which are keys in the dynamics of tropical forests in Southeast Asia and Central and South America. Geometric morphometry has been proved to be a useful tool for the study of morphological evolution in mammals, but studies involving cranial geometric morphometry of tapiroids have never been done. We hereby propose landmarks for the study of tapir cranial shape through 2D geometric morphometric technique, including 20 in lateral cranial view (n = 71), 14 in dorsal cranial view (n = 51), and 21 in ventral cranial view (n = 44), followed by PCA multivariate statistical analysis that ordinated specimens from each of the three data groups along the major axis of shape variation. Lateral and dorsal view landmarks proved to be the most diagnostic for the species studied, providing interesting insights and trends on tapiroid cranial evolution. Ventrally, the species analyzed do not differentiate significantly. In this paper, we add new information to the current cranial morphometric database of tapirs, which can help elucidate questions about their evolutionary history.


Tapirus Skull Shape Evolution Geometric morphometry 



This work received grants from FAPEMIG and CAPES from Brazil. We thank C. Cartelle (Museu de Ciências Naturais PUC Minas, Belo Horizonte, Brazil), L. F. B. Flamarion (Coleção de Mastozoologia do Museu Nacional do Rio de Janeiro, Brazil), and F. A. Perini (Coleção de Mastozoologia da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil) for the access to tapir collections.

Supplementary material

10914_2018_9432_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.04 MB)


  1. Albright LB (1998) New genus of tapir (Mammalia: Tapiridae) from the Arikareean (earliest Miocene) of the Texas Coastal Plain. J Vertebr Paleontol 18:200–217CrossRefGoogle Scholar
  2. Bai B, Wang Y, Meng J, Li Q, Jin X (2014) New early Eocene basal tapiromorph from southern China and its phylogenetic implications. PLoS One 9(10):e110806CrossRefGoogle Scholar
  3. Bookstein FL (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, CambridgeGoogle Scholar
  4. Cione AL, Gasparini GM, Soibelzon E, Soibelzon, LH, Tonni EP (2015) The Great American Biotic Interchange. A South American Perspective. SpringerBriefs in Earth System Sciences. Springer, DordechtGoogle Scholar
  5. Cozzuol MA, Clozato CL, Holanda EC, Rodrigues FHG, Nienow S, de Thoisy B, Redondo RAF, Santos FR (2013) A new species of tapir from the Amazon. J Mammal 94:1331–1345CrossRefGoogle Scholar
  6. Cozzuol MA, de Thoisy B, Fernandes-Ferreira H, Rodrigues FHG, Santos FR (2014) How much evidence is enough evidence for a new species? J Mammal 95:899–905CrossRefGoogle Scholar
  7. Dasheveg D, Hooker JJ (1997) New ceratomorph perissodactyls (Mammalia) from the middle and late Eocene of Mongolia: their implications for phylogeny and dating. Zool J Linn Soc 120:105–138Google Scholar
  8. Ferrero B, Noriega JI (2007) A new upper Pleistocene tapir from Argentina: remarks on the phylogenetics and diversification of Neotropical Tapiridae. J Vertebr Paleontol 27:504–511CrossRefGoogle Scholar
  9. Fornel R, Cordeiro-Estrela P (2012) Morfometria Geométrica e a quantificação da forma nos organismos - Temas em Biologia: Edição Comemorativa aos 20 anos do Curso de Ciências biológicas e aos 5 anos do PPG-Ecologia da URI Campus Erechim. PPG-Ecologia, ErechimGoogle Scholar
  10. Gibson ML (2011) Population structure based on age-class distribution of Tapirus polkensis from the Gray Fossil Site Tennessee. M.S. Thesis, East Tennessee State University, Johnson CityGoogle Scholar
  11. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9Google Scholar
  12. Holanda EC, Ferigolo J, Ribeiro AM (2011) New Tapirus species (Mammalia: Perissodactyla: Tapiridae) from the upper Pleistocene of Amazonia, Brazil. J Mammal 92:111–120CrossRefGoogle Scholar
  13. Holanda EC, Ferrero B (2012) Reappraisal of the genus Tapirus (Perissodactyla, Tapiridae): systematics and phylogenetic affinities of the South American tapirs. J Mammal Evol 20:33–44CrossRefGoogle Scholar
  14. Holbrook LT (1998) The phylogeny and classification of tapiromorph perissodactyls (Mammalia). Cladistics 15:331–350CrossRefGoogle Scholar
  15. Hulbert RC Jr (2005) Late Miocene Tapirus (Mammalia, Perissodactyla) from Florida, with description of a new species, Tapirus webbi. Bull Florida Mus Nat Hist 45:465–494Google Scholar
  16. Hulbert RC Jr (2010) A new early Pleistocene tapir (Mammalia: Perissodactyla) from Florida, with a review of Blancan tapirs from the state. Bull Florida Mus Nat Hist 49(3):67–126Google Scholar
  17. Hulbert RC Jr, Wallace SC, Klippel WE, Parmalee PW (2009) Cranial morphology and systematics of an extraordinary sample of the late Neogene dwarf tapir, Tapirus polkensis (Olsen). J Paleontol 8:238–262CrossRefGoogle Scholar
  18. Lawing AM, Polly PD (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280:1–7CrossRefGoogle Scholar
  19. Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (1996) Advances in Morphometrics. Plenum, New YorkGoogle Scholar
  20. MacLeod N, Forey PL (2001) Morphology, Shape, and Phylogeny. Taylor and Francis, LondonGoogle Scholar
  21. Monteiro L, dos Reis SF (1999) Princípios de morfometria geométrica. Holos Editora, Ribeirão PretoGoogle Scholar
  22. Moraes DA (2003) A morfometria geométrica e a “revolução na morfometria”: localizando e visualizando mudanças nas formas dos organismos. Bioletim, São PauloGoogle Scholar
  23. Mullin SK, Taylor PJ (2002) The effects of parallax on geometric morphometric data. Computers in Biology and Medicine 32:455–464CrossRefGoogle Scholar
  24. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Stallard RF, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry MP, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, Jackson JB (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883CrossRefGoogle Scholar
  25. Olmos F (1997) Tapirs as seed dispersers and predators. In: Brooks DM, Bodmer RE, Matola S (eds) Tapirs—Status Survey and Conservation Action Plan. IUCN Publications Services Unit, Cambridge, pp 3–9Google Scholar
  26. Padilla M, Dowler RC (1994) Tapirus terrestris. Mammal Species 481:1–8Google Scholar
  27. Radinsky LB (1965) Evolution of the tapiroid skeleton from Heptodon to Tapirus. Bull Mus Comp Zool 134:69–106Google Scholar
  28. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39(1):40–59CrossRefGoogle Scholar
  29. Rustioni M, Mazza P (2001) Taphonomic analysis of Tapirus arvenensis remains from the lower Valdarano (Tuscany, central Itay). Geobios 34(4):469–474CrossRefGoogle Scholar
  30. Wall WP (1980) Cranial evidence for a proboscis in Cadurcodon and a review of snout structure in the family Amynodontidae (Perissodactyla, Rhinocerotoidea). J Paleontol 54(5):968–977Google Scholar
  31. Webster M, Sheets HD (2001) A practical introduction to landmark-based geometric morphometrics. In: Alroy J, Hunt G (eds) Quantitative Methods in Paleobiology. Palaeontol Soc Pap 16:163–188Google Scholar
  32. Witmer LM, Sampson SD, Solounias N (1999) The proboscis of tapirs (Mammalia: Perissodactyla): a case study in novel narial anatomy. J Zool 249(3):249–267CrossRefGoogle Scholar
  33. Woodburne MO (2010) The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. J Mammal Evol 17:245–264CrossRefGoogle Scholar
  34. Xue-Ping JI, Jablonski NG, Hao-Wen T, Su DF, Ebbestad JOR, Cheng-Wu L, Teng-Song Y (2015) Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China. Vertebr Palasiatica 53:177–192Google Scholar
  35. Zlatozar B (2017) Fossil record of tapirs (Tapirus Brünnich, 1772) (Tapiridae Gray, 1821 - Peryssodactyla Owen, 1848) in Bulgaria. ZooNotes 108:1–3Google Scholar
  36. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier, AmsterdamCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Larissa C. C. S. Dumbá
    • 1
    Email author
  • Rodrigo Parisi Dutra
    • 1
    • 2
  • Mario A. Cozzuol
    • 3
  1. 1.PPG – Programa de Pós-Graduação em Zoologia/Departamento de Zoologia – Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto de Engenharia e TecnologiaCentro Universitário de Belo HorizonteBelo HorizonteBrazil
  3. 3.Departamento de Zoologia – Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations