Advertisement

Postcranial Skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and Locomotor Adaptation

  • K. R. K. JägerEmail author
  • Z.-X. Luo
  • T. Martin
Original Paper

Abstract

X-ray computed tomography of the cladotherian Henkelotherium guimarotae from the Kimmeridgian Guimarota coal mine (Portugal) adds new information on its postcranial skeleton. Contrary to earlier description, the humerus of Henkelotherium shows a plesiomorphic cladotherian condition similar to that seen in Dryolestes leiriensis in having individual radial and ulnar condyles on the anterior aspect of the distal joint, whereas the posterior aspect appears to be trochlear. The scapula is also more plesiomorphic than previously assumed in having a laterally flared crest on the inferior margin. In this regard, it is similar to the scapula of spalacotherioid “symmetrodontans” such as Zhangheotherium but more derived than the latter, in having a larger supraspinous fossa. The hind limb is similar to that of small extant therians, which is interpreted to be assocated with an upright limb posture. The previously proposed hypothesis of an arboreal lifestyle for Henkelotherium is corroborated by a number of skeletal features such as large humeral entepicondyles, prominent digital flexor tubercles, elongated and slender tail vertebrae, as well as a high pedal phalangeal index of 153%.

Keywords

Henkelotherium Jurassic CT reconstruction Postcranial skeleton Locomotor function Habitat preference 

Notes

Acknowledgments

We thank Dorothea Kranz for drawing the restoration of the Scapula of Henkelotherium and Georg Oleschinski (both Universität Bonn) and Sven Tränkner (Forschungsinstitut Senckenberg, Frankfurt am Main) for photography. Lothar Kallien and Walter Lais (Hochschule Aalen) is thanked for μCT-scanning. For access to comparative material, we thank Rainer Hutterer and Jan Decher (Zoologisches Forschungsmuseum Alexander Koenig). David Grossnickle (University of Chicago) kindly shared his dataset on phalangeal indices. Z-XL was supported by a Humboldt Research Award of the Alexander von Humboldt-Stiftung (Bonn). We also thank two anonymous reviewers and the Editor of JME Dr. John Wible for comments and improvements on the manuscript. KJ thanks his wife Meena Förderer for her feedback on the manuscript and continuous support.

Supplementary material

10914_2018_9457_MOESM1_ESM.xlsx (17 kb)
ESM 1 (XLSX 16 kb)

References

  1. Ankel F (1962) Vergleichende Untersuchungen über die Skelettmorphologie des Greifschwanzes südamerikanischer Affen (Platyrrhina). Z Morphol Ökol Tiere 52: 131–170Google Scholar
  2. Ankel F (1967) Morphologie von Wirbelsäule und Brustkorb. In: Hofer H, Schultz AH, Starck D (eds) Primatologia Vol IV. S Krager, Basel and New York, pp 1–120Google Scholar
  3. Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247: 51–79Google Scholar
  4. Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255: 279–300Google Scholar
  5. Averianov AO, Martin T, Lopatin AV (2013) A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100: 311–326Google Scholar
  6. Bonnan MF, Shulman J, Varadharajan R, Gilbert C, Wilkes M, Horner A, Brainerd E (2016) Forelimb kinematics of rats using XROMM, with implications for small eutherians and their fossil relatives. PLoS One 11(3): e0149377.  https://doi.org/10.1371/journal.pone.0149377
  7. Boyer DM, Prasad GVR, Krause DW, Godinot M, Goswami A, Verma O, Flynn JJ (2010) New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals. Naturwissenschaften 97: 365–377Google Scholar
  8. Campione NE, Evans DC (2012) A universal scaling relationship between bodymass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10: 60Google Scholar
  9. Chen M, Luo Z-X (2013) Postcranial skeleton of the Cretaceous mammal Akidolestes cifellii and its locomotor adaptations. J Mammal Evol 20: 159–189Google Scholar
  10. Chen M, Wilson GP (2015) A multivariate approach to infer locomotor modes in Mesozoic mammals. Paleobiology 41: 280–312Google Scholar
  11. Chen M, Wilson GP, Luo Z-X (2017) The postcranial skeleton of Yanoconodon allini from the Early Cretaceous of Hebei, China, and its implications for locomotor adaptation in eutriconodontan mammals. J Vertebr Paleontol 37: e1315425.  https://doi.org/10.1080/02724634.2017.1315425.
  12. Chester SG, Sargis EJ, Szalay FS, Archibald JD, Averianov AO (2010) Mammalian distal humeri from the Late Cretaceous of Uzbekistan. Acta Palaeontol Pol 55: 199–211Google Scholar
  13. Chester SG, Sargis EJ, Szalay FS, Archibald JD, Averianov AO (2013) Therian femora from the Late Cretaceous of Uzbekistan. Acta Palaeontol Pol 57: 53–64Google Scholar
  14. Drescher E (2000) Preparation of the fossils from the Guimarota mine. In: Martin T, Krebs B (eds) Guimarota – A Jurassic Ecosystem. Verlag Dr. Friedrich Pfeil, München, pp 137–142Google Scholar
  15. Evans H E (1993) Miller’s Anatomy of the Dog. Elsevier, St. Louis, 1130 ppGoogle Scholar
  16. Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinematics of small therian mammals. J Exp Biol 205: 1315–1338Google Scholar
  17. Fröbisch J, Reisz RR (2009) The late Permian herbivore Suminia and the early evolution of arboreality in terrestrial vertebrate ecosystems. Proc Roy Soc B: Biol Sci 276: 3611–3618Google Scholar
  18. Gambaryan PP, Aristov AA, Dixon JM, Zubtsova GY (2002) Peculiarities of the hind limb musculature in monotremes: An anatomical description and functional approach. Russ J Theriol 1: 1–36Google Scholar
  19. Gambaryan PP, Kielan-Jaworowska Z (1997) Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontol Pol 42: 13–44Google Scholar
  20. Gambaryan PP, Kuznetsov AN, Panyutina AA, Gerasimov SV (2015) Shoulder girdle and forelimb myology of extant Monotremata. Russ J Theriol 14: 1–56Google Scholar
  21. Goswami A, Prasad GV, Upchurch P, Boyer DM, Seiffert ER, Verma, O, Gheerbrant E, Flynn JJ (2011) A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. Proc Natl Acad Sci USA 108: 16333–16338Google Scholar
  22. Hildebrand M, Goslow G, Distler C (2001) Vergleichende und funktionelle Anatomie der Wirbeltiere. Springer, Berlin, 713 ppGoogle Scholar
  23. Hu Y, Wang Y, Luo Z-X, Li C (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142Google Scholar
  24. Hurum JH, Kielan-Jaworowska Z (2008) Postcranial skeleton of a Cretaceous multituberculate mammal Catopsbaatar. Acta Palaeontol Pol 53: 545–566Google Scholar
  25. Jenkins FA Jr (1970) Limb movements in a monotreme (Tachyglossus aculeatus): a cineradiographic analysis. Science 168: 1473–1475Google Scholar
  26. Jenkins FA Jr (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool 165: 303–315Google Scholar
  27. Jenkins FA Jr (1973) The functional anatomy and evolution of the mammalian humero-ulnar articulation. Am J Anat 137: 281–298Google Scholar
  28. Jenkins FA Jr (1974) Tree shrew locomotion and the origins of primate arborealism. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 85–115Google Scholar
  29. Jenkins FA Jr, Parrington FR (1976) The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philos Trans Roy Soc Lond 273: 387–431Google Scholar
  30. Jenkins FA Jr, Weijs WA (1979) The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J Zool (Lond) 188: 379–410Google Scholar
  31. Jenkins FA Jr, Schaff CR (1988) The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vertebr Paleontol 8: 1–24Google Scholar
  32. Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398: 326–330Google Scholar
  33. Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA (2002) The earliest known eutherian mammal. Nature 416: 816–822Google Scholar
  34. Ji Q, Luo Z-X, Yuan C-X, Tabrum AR (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311: 1123–1127Google Scholar
  35. Ji Q, Luo Z-X, Zhang X-L, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281Google Scholar
  36. Kielan-Jaworowska Z, Cifelli R, Luo Z-X (2004) Mammals from the Age of Dinosaurs. Origins, Evolution, and Structure. Columbia University Press, New York, 700 ppGoogle Scholar
  37. Kielan-Jaworowska Z, Gambaryan PP (1994) Postcranial anatomy and habits of Asian multituberculate mammals. Fossils & Strata 36: 1–92Google Scholar
  38. Kielan-Jaworowska Z, Hurum JH (2006) Limb posture in early mammals: Sprawling or parasagittal. Acta Palaeontol Pol 51: 393–406Google Scholar
  39. Kilbourne BM (2017) Selective regimes and functional anatomy in the mustelid forelimb: diversification toward specializations for climbing, digging, and swimming. Ecology and Evolution. 2017:1–12Google Scholar
  40. Kirk EC, Lemelin P, Hamrick MW, Boyer DM, Bloch JI (2008) Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms. J Hum Evol 55: 278–299Google Scholar
  41. Krause DW, Jenkins FA Jr (1983) The postcranial skeleton of North American multituberculates. Bulletin of the Museum of Comparative Zoology 150: 199–246Google Scholar
  42. Krebs B (1991) Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berl geowiss Abh A 133: 1–110Google Scholar
  43. Kümmell S (2009) Die Digiti der Synapsida: Anatomie, Evolution und Konstruktionsmorphologie. Published dissertation, University Witten/Herdecke. Shaker, Herzogenrath, 424 ppGoogle Scholar
  44. Kümmell S, Frey E (2012) What digits tell us about digging, running and climbing in Recent and fossil Synapsida. Annual Meeting of the European Asociation of Vertebrate Palaeontologists 10: 117–119Google Scholar
  45. Kurz C (2007) The opossum-like marsupials (Didelphimorphia and Peradectia, Marsupialia, Mammalia) from the Eocene of Messel and Geiseltal - ecomorphology, diversity and palaeogeography. Kaupia 15: 3–64Google Scholar
  46. Lammers AR (2007) Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110: 93–103Google Scholar
  47. Lemelin P (1999) Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. J Zool 247: 165–175Google Scholar
  48. Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439: 195–200Google Scholar
  49. Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature 450: 1011–1019Google Scholar
  50. Luo Z-X (2015) Origin of the mammalian shoulder. In: Dial KP, Shubin NH, Brainerd EL (eds) Great Transformations: Major Events in the History of Vertebrate Life. The University of Chicago Press, Chicago, pp 167–187Google Scholar
  51. Luo Z-X, Ji Q (2005) New study on dental and skeletal features of the Cretaceous “symmetrodontan” mammal Zhangheotherium. J Mammal Evol 12: 337–357Google Scholar
  52. Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940Google Scholar
  53. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47: 1–78Google Scholar
  54. Luo Z-X, Meng Q-J, Grossnickle DM, Liu D, Zhang Y-G, Neander AI, Ji Q (2017) New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548: 326–329.  https://doi.org/10.1038/nature23483
  55. Luo Z-X, Meng Q-J, Ji Q, Liu D, Zhang Y-G, Neander AI (2015) Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 347: 760–764Google Scholar
  56. Luo Z-X Meng Q-J, Liu D, Y-G Zhang, Yuan C-X (2016) Cruro-pedal structure of the paulchoffatiid multituberculate Rugosodon eurasiaticus and evolution of the multituberculate ankle. Palaeontologia Polonica 67: 149–169.  https://doi.org/10.4202/pp.2016.67_149
  57. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442445Google Scholar
  58. MacLeod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am J Sci 293: 300–355Google Scholar
  59. Martin T (2000) The dryolestids and the primitive “peramurid” from the Guimarota mine. In: Martin T, Krebs B (eds) Guimarota - A Jurassic Ecosystem. Verlag Dr. Friedrich Pfeil, München, pp 109–120Google Scholar
  60. Martin T (2005) Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool J Linn Soc 145: 219–248Google Scholar
  61. Martin T (2006) Early mammalian evolutionary experiments. Science 311: 1109–1110Google Scholar
  62. Martin T (2013) Mammalian postcranial bones from the Late Jurassic of Portugal and their implications for forelimb evolution. J Vertebr Paleontol 33: 1432–1441Google Scholar
  63. Martin T, Marugán-Lobón J, Vullo R, Martín-Abad H, Luo Z-X, Buscalioni AD (2015) A Cretaceous eutriconodont and integument evolution in early mammals. Nature 526: 380–384Google Scholar
  64. Meng Q-J, Grossnickle DM, Liu D, Zhang Y-G, Neander AI, Luo Z-X (2017) New gliding mammaliaforms from the Jurassic. Nature 548: 291–296Google Scholar
  65. Meng Q-J, Ji Q, Zhang Y-G, Liu D, Grossnickle DM, Luo Z-X (2015) An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347: 764–768Google Scholar
  66. Novacek MJ, Rougier GW, Wible JR, McKenna MC, Dashzeveg D, Horovitz I (1997) Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486Google Scholar
  67. Organ JM (2010) Structure and function of platyrrhine caudal vertebrae. Anat Rec 293: 730–745Google Scholar
  68. Pridmore PA (1985) Terrestrial locomotion in monotremes (Mammalia: Monotremata). J Zool 205: 53–73Google Scholar
  69. Rougier GW (1993) Vincelestes neuquenianus Bonaparte (Mammalia, Theria), un primitivo mammifero del Cretacico Inferior de la Cuenca Neuqina. Ph.D. Thesis, Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, 720 ppGoogle Scholar
  70. Rougier GW, Ji Q, Novacek MJ (2003) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sin 77: 7–14Google Scholar
  71. Ruf I, Luo Z-X, Wible JR, Martin T (2009) Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat 214: 679–693Google Scholar
  72. Russo GA (2015) Postsacral vertebral morphology in relation to tail length among primates and other mammals. Anat Rec 298: 354–375Google Scholar
  73. Salton JA, Sargis EJ (2008a) Evolutionary morphology of the Tenrecoidea (Mammalia) carpal complex. Biol J Linn Soc 93: 267–288Google Scholar
  74. Salton JA, Sargis EJ (2008b) Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 51–71Google Scholar
  75. Salton JA, Sargis EJ (2009) Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J Morphol 270: 367–387Google Scholar
  76. Samuels JX, Meachen JA, Sakai SA (2013) Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 274: 121–146Google Scholar
  77. Sargis EJ (2001) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool 253: 473–483Google Scholar
  78. Sargis EJ (2002) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253: 10–42Google Scholar
  79. Sereno PC (2006) Shoulder girdle and forelimb in a Cretaceous multituberculate: form, functional evolution, and a proposal for basal mammalian taxonomy. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. The University of Chicago Press, Chicago, pp 315–370Google Scholar
  80. Sereno PC, McKenna MC (1995) Cretaceous multituberculate skeleton and the early evolution of the mammalian shoulder girdle. Nature 377: 144–147Google Scholar
  81. Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, Cambridge and New York, 496 ppGoogle Scholar
  82. Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23: 1–166Google Scholar
  83. Vázquez-Molinero R (2004) Comparative anatomy of Henkelotherium guimarotae (Holotheria), a Late Jurassic small mammal, and its relevance for the evolution of the mode of locomotion of modern mammals. Published dissertation, Freie Universität Berlin, 130 ppGoogle Scholar
  84. Vázquez-Molinero R, Martin T, Fischer MS, Frey R (2001) Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications for its locomotion. Mitt Mus Natkd Berl, Zool Reihe 77: 207–216Google Scholar
  85. Von den Driesch A (1976) A Guide to the Measurement of Animal Bones from Archaeological Sites. As Developed by the Institut für Palaeoanatomie, Domestikationsforschung Und Geschichte der Tiermedizin of the University Of Munich. Peabody Museum of Archaeology and Ethnology Harvard University, Cambridge, 136 ppGoogle Scholar
  86. Weisbecker V, Warton DI (2006) Evidence at hand: diversity, functional implications and locomotor prediction in intrinsic hand proportions of diprotodontian marsupials. J Morphol 267: 1469–1485Google Scholar
  87. Wible JR, Rougier GW, Novacek MJ, Asher, RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327: 1–123Google Scholar
  88. Witte H, Preuschoft H, Fischer MS (2002) The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. Z Morphol Anthropol 83: 221–233Google Scholar
  89. Yuan C-X, Ji Q, Meng Q-J, Luo Z-X (2013) Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science 341: 779–783Google Scholar
  90. Zheng X, Bi S, Wang X, Meng J (2013) A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500: 199–202Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenUniversität BonnBonnGermany
  2. 2.Department of Organismal Biology and AnatomyThe University of ChicagoChicagoUSA

Personalised recommendations