Using Paleoclimate and the Fossil Record to Explain Past and Present Distributions of Armadillos (Xenarthra, Dasypodidae)

  • Esteban Soibelzon
Original Paper


Numerous climatic fluctuations occurred during the Cenozoic (last 66 Ma BP); some of them were drastic (e.g., during the Eocene-Oligocene boundary) while others were more gradual (e.g., late Tertiary cooling), but both have deep effect on the biotas. Armadillos are exclusively from the Americas; they have an old evolutionary history in South America and faunal replacement and/or local extinctions were detected, linked with climatic fluctuations. The global cooling of the late Eocene - early Oligocene coincides with a well-documented faunal turnover of Dasypodinae by Euphractinae in Patagonia. During cold and arid periods of the Quaternary, Euphractinae and Tolypeutinae moved more than once to the eastern Pampean Region, and Dasypodinae moved northward to central Brazil or even further north to the Guyana Region. During interglacial periods some armadillos went extinct locally and/or moved to Patagonia (Zaedyus), central Argentina (Tolypeutes matacus, Chaetophractus vellerosus), or from the north to Mesopotamia and the Pampean Region (Dasypus). Since the end of the Pleistocene/early Holocene, human activity has strongly impacted armadillo populations. Currently, the eastern Pampean Region (Argentina) is characterized by the presence of the couple C. villosus - D. hybridus (probably established since the late Holocene), but during the Pleistocene was Z. pichiyT. matacus while Z. pichiy - C. villosus characterized early-middle Holocene. This work serves as evidence that paleozoological studies can be used to assess responses of biological systems to large scale perturbations and is the basis for studying future species distributions, in order to identify species in danger of extinction and establish management actions.


America Biogeography Holocene Mammalia Pleistocene Quaternary 



I wish to thank the curators of museums who facilitated access to specimens used in this study, M. Reguero, D. Verzi (Museo de La Plata, Argentina), S. Hochgraf (Department of Ecology and Evolutionary Biology, University of Connecticut, USA), E. Westwig (American Museum of Natural History, USA), C. Cartelle (Museo de Historia Natural da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil), J. A. de Olivera (Museu Nacional, Rio de Janeiro, Brazil), L. Avilla (Laboratorio de Mastozoología, UNIRIO, Brazil), F. Paredes Ríos (Museo Arqueológico Paleontológico de Tarija, Bolivia), D. Brinkman (Yale Paleontology Museum, USA). D.N. Ciai and D. Croft are thanked for improving the English. I especially thank D.A. Croft, E.P. Tonni, and two anonymous reviewers for comments that improved this manuscript. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP) and Agencia de Promoción Científica y Tecnológica (ANPCyT) are acknowledged for financial support.


  1. Abba AM, Vizcaíno SF (2011) Distribución de los armadillos (Xenarthra: Dasypodidae) en la provincia de Buenos Aires, Argentina. Mastozool Neotropical 18: 185–206Google Scholar
  2. Beilinson E, Gasparini GM, Soibelzon LH, Soibelzon E (2015) Insights into Pleistocene palaeoenvironments and biostratigraphy in south-eastern Buenos Aires province (Argentina) from continental deposits. J South Am Earth Sci 60: 82–91CrossRefGoogle Scholar
  3. Bergqvist LP, Avilla LS, Abrantes EAL (2004) The Xenarthra of São José de Itaboraí basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brasil. Geodiversitas 26: 323–337Google Scholar
  4. Billet G, Hautier L, Muizon C de, Valentin X (2011) Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution. Proc Royal Soc B 278:2791–2797CrossRefGoogle Scholar
  5. Broecker WS (2001) Was the Medieval warm period global? Science 291: 1497–1499CrossRefPubMedGoogle Scholar
  6. Broecker WS, Denton GH, Edwards RL, Cheng H, Alley RB, Putnam AE (2010) Putting the Younger Dryas cold event into context. Quaternary Sci Rev 29: 1078–1081CrossRefGoogle Scholar
  7. Bruniard ED (1982) La diagonal árida argentina: un límite climático real. Rev geográfica 95: 6–20Google Scholar
  8. Carlini AA, Scillato-Yané GJ (1999) Evolution of Quaternary xenarthrans (Mammalia) of Argentina. In: Tonni EP, Cione AL (eds) Quaternary of South America and Antarctic peninsula. AA Balkema, Rotterdam, pp 149–175Google Scholar
  9. Carlini AA, Soibelzon E, Glaz D (2016) Chaetophractus vellerosus (Cingulata: Dasypodidae). Mammal Species 937:73–82CrossRefGoogle Scholar
  10. Castro M (2015) Sistemática y evolución de los armadillos Dasypodini (Xenarthra, Cingulata, Dasypodidae). Rev Mus La Plata 15: 1–50Google Scholar
  11. Chamberlain PA (1980) Armadillos: problems and control. Proceedings of the 9th vertebrate Pest conference: 163-169Google Scholar
  12. Ciancio MR (2016) Los armadillos (Dasypodidae, Xenarthra) del Cenozoico temprano-medio de Argentina: Aspectos evolutivos, bioestratigráficos y biogeográficos. In: Agnolin FL, Lio GL, Egli FB, Chimento NR, Novas FE (eds) Historia evolutiva y paleobiogeográfica de los vertebrados de América del Sur. Contribuciones del MACN, Buenos Aires, pp 231–247Google Scholar
  13. Ciancio MR, Carlini AA, Campbell KE, Scillato-Yané GJ (2013) New Palaeogene cingulates (Mammalia, Xenarthra) from Santa Rosa, Perú and their importance in the context of south American faunas. J Syst Palaeontol 11: 727–741CrossRefGoogle Scholar
  14. Ciancio MR, Krmpotic CM, Soibelzon E, Urrutia J (2006) Los Dasypodoidea (Mammalia, Xenarthra) de la Fm. Lomas de Las Tapias, San Juan, Argentina. Implicancias Paleobiogeográficas. Ameghiniana 43: 30R.Google Scholar
  15. Cione AL, Gasparini GM, Soibelzon E, Soibelzon LH, Tonni EP (2015) The Great American Biotic Interchange in Southern South America: Land Mammal Biostratigraphy, Climatic Evolution and Faunal Integration. SpringerBriefs in Earth System Sciences, New York-LondonGoogle Scholar
  16. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36: 199–204Google Scholar
  17. De Menocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292:667–673CrossRefGoogle Scholar
  18. Delsuc F, Catzeflis FM, Stanhope MJ, Douzery EJP (2001) The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proc Roy Soc B 268: 1605–1615CrossRefGoogle Scholar
  19. Deschamps JR, Otero O, Tonni EP (2003) Cambio climático en la pampa bonaerense: las precipitaciones desde los siglos XVIII al XX. Universidad de Belgrano, Documentos de Trabajo 109: 1–18Google Scholar
  20. Feijó A, Garbino GST, Campos BATP, Rocha PA, Ferrari SF, Langguth A (2015) Distribution of Tolypeutes Illiger, 1811 (Xenarthra: Cingulata) with comments on its biogeography and conservation. Zool Science 32:77–87CrossRefGoogle Scholar
  21. Feng X, Anacleto TCS, Papeş M (2016) Climatic similarity of extant and extinct Dasypus armadillos. J Mammal Evol DOI  10.1007/s10914-016-9336-y
  22. Fitch HS, Goodrum P, Newman C (1952) The armadillo in the southeastern United States. J Mammal 33: 21–37CrossRefGoogle Scholar
  23. Folland CK, Karl TR, Vinnikov KYA (1990) Observed climate variations and change. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, New York, and Melbourne, pp 195-238Google Scholar
  24. Francia A, Ciancio MR (2013) First record of Chaetophractus villosus (Mammalia, Dasypodidae) in the late Pleistocene of Corrientes Province (Argentina). Rev Mus La Plata 13: 1–9Google Scholar
  25. Francia A, Zurita AE, Carlini AA (2015) How marine Isotope stage 3 (MIS3) is reflected in northern Mesopotamia faunal assemblage of Argentina: the Xenarthra Cingulata case. Quaternary Internatl 377: 126–139Google Scholar
  26. Gasparini GM, Soibelzon E, Deschamps CM, Francia A, Beilinson E, Soibelzon LH, Tonni EP (2016) Continental vertebrates during the marine Isotope stage 3 (MIS 3) in Argentina. In: Gasparini GM, Rabassa J, Deschamps CM, Tonni EP (eds) Marine Isotope Stage 3 in Southern South America, 60 Ka B.P.-30 Ka B.P. Springer Earth System Sciences, New York, pp 227-247Google Scholar
  27. Gaudin TJ, Croft DA (2015) Paleogene Xenarthra and the evolution of South American mammals. J Mammal 96:622–634CrossRefGoogle Scholar
  28. Gibb GC, Condamine FL, Kuch M, Enk J, Moraes-Barros N, Superina M, Poinar HN, Delsuc F (2016) Shotgun mitogenomics provides a reference phylogenetic framework and timescale for living xenarthrans. Mol Biol Evol 33: 621–642CrossRefPubMedGoogle Scholar
  29. Goin FJ, Woodburne MO, Zimicz AN, Martin GM, Chornogubsky L (2015) A Brief History of South American Metatherians. Evolutionary Contexts and Intercontinental Dispersals. SpringerBriefs in Earth System Sciences, New York-LondonGoogle Scholar
  30. Graham RW, Lundelius EL Jr (2010) FAUNMAP II: new data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0Google Scholar
  31. Humphrey SR (1974) Zoogeography of the nine-banded armadillo (Dasypus novemcinctus) in the United States. BioScience 24: 457–462CrossRefGoogle Scholar
  32. Iglesias A, Artabe AE, Morel EM (2011) The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biol J Linn Soc 103: 409–422CrossRefGoogle Scholar
  33. IUCN (2016) The IUCN red list of threatened species. Version 2016-1. Accessed 26 August 2016
  34. Kalmbach ER (1944) The Armadillo: Its Relation to Agriculture and Game. Texas Game Fish and Oyster Commission, Austin, 60 ppGoogle Scholar
  35. Krmpotic CM, Carlini AA, Scillato-Yane GJ (2009a) The species of Eutatus (Mammalia, Xenarthra): assessment, morphology and climate. Quaternary Internatl 210: 66–75Google Scholar
  36. Krmpotic CM, Ciancio MR, Barbeito C, Mario RC, Carlini AA (2009b) Osteoderm morphology in recent and fossil euphractine xenarthrans. Acta Zool 90: 339–351CrossRefGoogle Scholar
  37. Loponte D, Acosta A (2012) Nuevos registros de armadillos (Xenarthra: Dasypodidae) del Holoceno tardío en la Región Pampeana, Argentina. Mastozool Neotropical 19: 163–178Google Scholar
  38. Lyman R (2006) Paleozoology in the service of conservation biology. Evol Anthropol 15:11–19CrossRefGoogle Scholar
  39. Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339: 1198–1201Google Scholar
  40. Mazzanti DL, Quintana CA (2001) Cueva Tixi. Cazadores y Recolectores de las Sierras de Tandilia Oriental: 1. geología, paleontología y zooarqueología. Laboratorio de Arqueología, Universidad Nacional de Mar del Plata, Buenos AiresGoogle Scholar
  41. McDonough CM, Loughry WJ (1997) Patterns of mortality in a population of nine-banded armadillos, Dasypus novemcinctus. Am Midl Nat 138: 299–305CrossRefGoogle Scholar
  42. McNab BK (1980) Energetics and the limits to a temperate distribution in armadillos. J Mammal 61: 606–627CrossRefGoogle Scholar
  43. Mitchell KJ, Scanferla A, Soibelzon E, Bonini R, Ochoa J, Cooper A (2016) Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos. Mol Ecol 25: 3499–3508Google Scholar
  44. Monge-Nájera J (1996) Jurassic-Pliocene biogeography: testing a model with velvet worm (Onychophora) vicariance. Rev Biol Trop 44: 159–175Google Scholar
  45. Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494CrossRefPubMedGoogle Scholar
  46. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry MP, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon LH, Todd JA, Vermeij GJ, Jackson JBC (2016) Formation of the isthmus of Panama. Sci Adv 2. doi:  10.1126/sciadv.1600883
  47. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11: 1633–1644CrossRefGoogle Scholar
  48. Poljak S (2009) Estudios filogeográficos en Dasypodidae [Mammalia Xenarthra] de Argentina: Chaetophractus villosus y Chaetophractus vellerosus como modelos de análisis. Tesis Doctoral. Facultad de Ciencias Naturales y Museo (UNLP), La Plata, Buenos Aires, ArgentinaGoogle Scholar
  49. Poljak S, Confalonieri V, Fasanella M, Gabrieli M and Lizarralde MS (2010) Phylogeography of the armadillo Chaetophractus villosus (Dasypodidae Xenarthra): post-glacial range expansion from pampas to Patagonia (Argentina). Mol Phylogen Evol 55: 38–46Google Scholar
  50. Poljak S, Escobar J, Deferrari G, Lizarralde M (2007) Un nuevo mamífero introducido en la Tierra del Fuego: el “peludo” Chaetophractus villosus (Mammalia, Dasypodidae) en Isla Grande. Rev Chilena Hist Nat 80: 285–294Google Scholar
  51. Ponce JF, Rabassa J (2012) La plataforma submarina y la costa atlántica argentina durante los últimos 22.000 años. Ciencia Hoy 22: 37–43Google Scholar
  52. Rabassa J, Coronato AM, Salemme, M (2005) Chronology of the late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). J South Am Earth Sci 20:81–103CrossRefGoogle Scholar
  53. Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene Thermal Maximum. Quaternary Sci Rev 48: 7–19Google Scholar
  54. Rodriguez-Bualó S, Soibelzon E, Scarano AC, Zurita AE (2014) Chaetophractus tarijensis (Xenarthra, Dasypodidae) ¿Un endemismo del Valle De Tarija (Bolivia)? Implicancias paleobiogeográficas. Rev bras paleontol 17:59–68CrossRefGoogle Scholar
  55. Scillato-Yané GJ, Krmpotic CM, Esteban GI (2010) The species of genus Chasicotatus Scillato-Yané (Eutatini, Dasypodidae). Rev Mex Cienc Geol 27: 43–55Google Scholar
  56. Shapiro B, Graham RW, Letts B (2015) A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas 44: 14–23CrossRefGoogle Scholar
  57. Soibelzon E, Avilla LS, Castro M (2015) The cingulates (Mammalia: Xenarthra) from the late Quaternary of northern Brazil: fossil records, paleoclimates and displacements in America. Quaternary Internatl 377: 118–125Google Scholar
  58. Soibelzon E, Carlini AA, Tonni EP, Soibelzon LH (2006) Chaetophractus vellerosus (Mammalia: Dasypodidae) in the Ensenadan (lower to middle Pleistocene) of southeastern Pampean region (Argentina). Paleozoogeographical and paleoclimatic aspects. Neues Jahrb Geol Paläontol 12: 734–748Google Scholar
  59. Soibelzon E, Daniele G, Negrete J, Carlini AA, Plischuk S (2007). Annual diet of little hairy armadillo Chaetophractus vellerosus gray, 1865 (Mammalia, Dasypodidae) in Buenos Aires province, Argentina. J Mammal 88, 1319–1324CrossRefGoogle Scholar
  60. Soibelzon E, León DC (2017) Effects of climatic oscillations on the faunas. The Holocene Thermal Maximum and the displacement of armadillos in Argentina: anatomical features and conservation. J Archaeol Sci: Rep 11: 90–98Google Scholar
  61. Soibelzon E, Medina M, Abba AM (2013) Late Holocene armadillos (Mammalia, Dasypodidae) of the sierras of Córdoba, Argentina: zooarchaeology, diagnostic characters and their paleozoological relevance. Quaternary Internatl 299: 72–79Google Scholar
  62. Soibelzon E, Miño-Boilini AR, Zurita AE, Krmpotic CM (2010) Los Xenarthra (Mammalia) del Ensenadense (Pleistoceno Inferior a Medio) de la Región Pampeana (Argentina). Rev Mex Cienc Geol 27: 449–469Google Scholar
  63. Soibelzon E, Tonni EP (2009) Early Pleistocene glaciations in Argentina (South America) and the response of the mammals: the case of the Pampean region. Current Research in the Pleistocene 26: 175–177Google Scholar
  64. Taulman JF, Robbins LW (2014) Range expansion and distributional limits of the nine-banded armadillo in the United States: an update of Taulman and Robbins (2014). J Biogeogr 41: 1626–1630Google Scholar
  65. Teta P, Medina M (2005) Holochilus brasiliensis (Rodentia, Cricetidae) en conjuntos arqueofaunísticos del Holoceno tardío de la Provincia de Córdoba (Argentina). Mastozool Neotropical 12: 271–275Google Scholar
  66. Tonni EP (1985) Mamíferos del Holoceno del Partido de Lobería, Provincia de Buenos Aires. Aspectos paleoambientales y bioestratigráficos del Holoceno del Sector Oriental de Tandilia y Área Interserranassss. Ameghiniana 22: 283–288Google Scholar
  67. Tonni EP (2003) Faunas y Clima en el Cuaternario de la Mesopotamia Argentina. Temas de la Biodiversidad del Litoral fluvial argentino INSUGEO. Miscelánea 12: 5–12Google Scholar
  68. Tonni EP (2006) Cambio climático en el Holoceno tardío de la Argentina. Una síntesis con énfasis en los últimos 1000 años. Folia Histórica del Nordeste, 16:187e–195Google Scholar
  69. Tonni EP, Alberdi MT, Prado JL, Bargo MS, Cione AL (1992) Changes of mammal assemblages in the Pampean region (Argentina) and their relation with the Plio-Pleistocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 95:179–194CrossRefGoogle Scholar
  70. Tonni EP, Cione AL, Figini AJ (1999) Predominance of arid climates indicated by mammals in the pampas of Argentina during the late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 147: 257–281CrossRefGoogle Scholar
  71. Tonni EP, Soibelzon E, Cione AL, Carlini AA, Scillato-Yané GJ, Zurita AE, Paredes Ríos F (2009) Mammals from the Pleistocene of the Tarija Valley (Bolivia). Correlation with the Pampean chronological standard. Quaternary Internatl 210: 57–65CrossRefGoogle Scholar
  72. Ubilla M, Marinez S (2016) Geology and Paleontology of the Quaternary of Uruguay. SpringerBriefs in Earth System Sciences, New York-LondonGoogle Scholar
  73. Ubilla M, Rinderknecht A, Corona A, Perea D (2017) Mammals in last 30 to 7 ka interval (late Pleistocene-early Holocene) in southern Uruguay (Santa Lucía River basin): last occurrences, climate, and biogeography. J Mammal Evol DOI  10.1007/s10914-017-9380-2
  74. Vivo M, Carmignotto AP (2004) Holocene vegetation change and the mammal faunas of South America and Africa. J Biogeogr 31:943–957CrossRefGoogle Scholar
  75. Vizcaíno SF, Pardiñas UFJ, Bargo MS (1995) Distribución de los armadillos (Mammalia, Dasypodidae) en la Región Pampeana (República Argentina) durante el Holoceno. Mastozool Neotropical 2: 149–165Google Scholar
  76. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ (2002) Ecological responses to recent climate change. Nature 416: 389–395CrossRefPubMedGoogle Scholar
  77. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rythyms, and aberrations in global climate 65 ma to present. Science 292: 686–693CrossRefPubMedGoogle Scholar
  78. Zanella FCV (2010) Evolução da biota da diagonal de formações abertas secas da América do Sul. In: Carvalho CJB, Almeida EAB (eds) Biogeografia da América do Sul. Padrões e Processos, São Paulo, pp 198–220Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata - CONICETLa PlataArgentina

Personalised recommendations