Advertisement

Cryptoprocta spelea (Carnivora: Eupleridae): What Did It Eat and How Do We Know?

  • Lindsay Renee MeadorEmail author
  • Laurie Rohde Godfrey
  • Jean Claude Rakotondramavo
  • Lovasoa Ranivoharimanana
  • Andrew Zamora
  • Michael Reed Sutherland
  • Mitchell T. Irwin
Original Paper

Abstract

The extent to which Madagascar’s Holocene extinct lemurs fell victim to nonhuman predators is poorly understood. Madagascar’s Holocene predator guild included several now-extinct species, i.e., crocodiles, carnivorans, and raptors. Here we focus on mammalian carnivory, specifically the roles of Cryptoprocta spelea and its still-extant but smaller-bodied sister taxon, C. ferox, the fosa. Cryptoprocta spelea was the largest carnivoran on Madagascar during the Quaternary. We ask whether some extinct lemurs exceeded the upper prey-size limits of C. spelea. We use univariate and multivariate phylogenetic generalized least squares regression models to re-evaluate the likely body mass of C. spelea. Next, we compare characteristics of the forelimb bones of C. ferox and C. spelea to those of other stealth predators specializing on small, mixed, and large-bodied prey. Finally, we examine humeri, femora, crania, and mandibles of extinct lemurs from six sites in four ecoregions of Madagascar to identify damage likely made by predators. We test the relative prevalence of carnivory by mammals, raptors, and crocodiles at different sites and ecoregions. Our data reveal that crocodiles, raptors, and the largest of Madagascar’s mammalian predators, C. spelea, all preyed on large lemurs. Cryptoprocta opportunistically consumed lemurs weighing up to ~85 kg. Its forelimb anatomy would have facilitated predation on large-bodied prey. Social hunting may have also enhanced the ability of C. spelea to capture large, arboreal primates. Cryptoprocta carnivory is well represented at cave and riverine sites and less prevalent at lake and marsh sites, where crocodylian predation dominates.

Keywords

Fosa Cryptoprocta Extinct lemurs Madagascar Extinction Eupleridae Predator 

Notes

Acknowledgments

This project was funded by the Paleontological Association and the University of Massachusetts Natural History Collections and Department of Anthropology. The Margot Marsh Biodiversity Foundation funded observation of fosa predation on sifakas. We thank Jeannot Randrianasy, Director of the Laboratory of Primatology at University of Antananarivo, for access to specimens. We thank Jean Luc Raharison and SADABE for providing fosa predation observations and collecting sifaka skeletal material. Comments on an earlier draft from reviewers William L. Jungers and Steven M. Goodman, as well as the editor, substantially improved this manuscript.

Supplementary material

10914_2017_9391_MOESM1_ESM.xlsx (50 kb)
Online Resource 1 List of Cryptoprocta, extinct lemur, and extant lemur specimens studied, including species, institutional identification number, element examined, locality, and collection that holds the specimen. UA = Université d’Antananarivo; AM = l’Académie Malgache; TFFP = Tsinjoarivo Forest Fragments Project. Other identification acronyms are specific to the collection holding the specimens. (XLSX 50 kb)

References

  1. Anderson JF, Hall-Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool Lond 207: 53–61CrossRefGoogle Scholar
  2. Baquedano E, Domınguez-Rodrigo M, Musiba C (2012) An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3. J Archaeol Sci 39: 1728–1737CrossRefGoogle Scholar
  3. Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4(02):150–162Google Scholar
  4. Binford L (1981) Bones: Ancient Men and Modern Myths. Academic Press, New YorkGoogle Scholar
  5. Britt A, Welch C, Katz A (2001) The impact of Cryptoprocta ferox on the Varecia v. variegata reinforcement project at Betampona. Lemur News, 6: 35–37Google Scholar
  6. Brochu C (2007) Morphology, relationships, and biogeographical significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zool J Linn Soc 150(4):835–863CrossRefGoogle Scholar
  7. Bunn HT (1982) Meat-eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleistocene hominids in East Africa. Dissertation, University of California BerkeleyGoogle Scholar
  8. Burness GP, Diamond J, Flannery T (2001) Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc Natl Acad Sci USA 98(25): 14518–14523CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carbone C, Mace GM, Roberts SC, MacDonald DW (1999) Energetic constraints on the diet of terrestrial carnivores. Nature 402: 286–288CrossRefPubMedGoogle Scholar
  10. Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLoS Biol 5: 1–6CrossRefGoogle Scholar
  11. Cohen B (2013) Actualistic investigation of bone modification on leporids by Caracal (Caracal caracal) and Honey Badger (Mellivora capensis); an insight to the taphonomy of Cooper’s Cave, South Africa. Dissertation, University of WitwatersrandGoogle Scholar
  12. Crowley BE (2010) A refined chronology of prehistoric Madagascar and the demise of the megafauna. Quaternary Sci Rev 29: 2591–2603CrossRefGoogle Scholar
  13. Dollar LJ (2006) Morphometrics, diet and conservation of Cryptoprocta ferox. Dissertation, Duke UniversityGoogle Scholar
  14. Dollar LJ, Ganzhorn JU, Goodman SM (2007) Primates and other prey in the seasonally variable diet of Cryptoprocta ferox in the dry deciduous forest of western Madagascar. In: Gursky S, Nekaris K (eds) Primate Anti-Predator Strategies. Springer, New York, pp 63–76CrossRefGoogle Scholar
  15. Drumheller SK, Brochu CA (2014) A diagnosis of Alligator mississippiensis bite marks with comparisons to existing crocodylian datasets. ICHNOS 21(2):131–146CrossRefGoogle Scholar
  16. Eizirik E, Murphy WJ (2009) Carnivores (Carnivora). In: Hedges SB, Kumar S (eds) The Timetree of Life. Oxford University Press, Oxford, pp 504–507Google Scholar
  17. Esteban-Nadal M, Cáceres I, Fosse P (2010) Characterization of a current coprogenic sample originated by Canis lupus as a tool for identifying a taphonomic agent. J Archaeol Sci 37: 2959–2970CrossRefGoogle Scholar
  18. Faurby S, Svenning JC (2015) A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol Phylogenet Evol 84:14–26CrossRefPubMedGoogle Scholar
  19. Fisher D (1981) Crocodilian scatology, microvertebrate concentrations, and enamel-less teeth. Paleobiology 7(2):262–275CrossRefGoogle Scholar
  20. Godfrey LR, Sutherland MR, Paine RR, Williams FL, Boy DS, Vuillaume-Randriamanantena M. (1995) Limb bone surface areas and their ratios in Malagasy lemurs and other mammals. Am J Phys Anthropol 97(1): 11–36CrossRefPubMedGoogle Scholar
  21. Goodman SM (1994a) Description of a new species of subfossil eagle from Madagascar - Stephanoaetus (Aves, Falconiformes) from the deposits of Ampasambazimba. Proc Biol Soc Wash 107(3):421–428Google Scholar
  22. Goodman SM (1994b) The enigma of antipredator behavior in lemurs - evidence of a large extinct eagle on Madagascar. Internatl J Primatol 15(1):129–134CrossRefGoogle Scholar
  23. Goodman SM (2012) Les Carnivora de Madagascar. Association Vahatra, AntananarivoGoogle Scholar
  24. Goodman SM, Jungers WL (2014) Extinct Madagascar: Picturing the Island’s Past. University of Chicago Press, ChicagoGoogle Scholar
  25. Goodman SM, Langrand O, Rasolonandrasana BPN (1997) The food habits of Cryptoprocta ferox in the high mountain zone of the Andringitra Massif, Madagascar (Carnivora, Viverridae). Mammalia 61(2): 185–192CrossRefGoogle Scholar
  26. Goodman SM, Muldoon KM (2016) A new subfossil locality for the extinct large Malagasy eagle Stephanoaetus mahery (Aves: Falconiformes): implications for time of extinction and ecological specificity. The Holocene 26: 985–989CrossRefGoogle Scholar
  27. Goodman SM, Rakotozafy LMA (1995) Evidence for the existence of two species of Aquila on Madagascar during the Quaternary. Geobios 28:241–246CrossRefGoogle Scholar
  28. Goodman SM, Rasoloarison RM, Ganzhorn JU (2004) On the specific identification of subfossil Cryptoprocta (Mammalia, Carnivora) from Madagascar. Zoosystema 26:129–143Google Scholar
  29. Grandidier G (1902) Observations sur les Lémuriens disparus de Madagascar. Collection Alluaud, Gaubert, Grandidier. Bull Mus Natl Hist Nat 8: 587–592Google Scholar
  30. Grandidier A, Vaillant L (1872) Sur le crocodile fossile d'Amboulintsatre (Madagascar). C R Acad Sci Paris 75:150–151Google Scholar
  31. Hawkins CE, Racey PA (2005) Low population density of a tropical forest carnivore, Cryptoprocta ferox: implications for protected area management. Oryx 39(1):35–43CrossRefGoogle Scholar
  32. Hawkins CE, Racey PA (2008) Food habits of an endangered carnivore, Cryptoprocta ferox, in the dry deciduous forests of western Madagascar. J Mammal 89:64–74CrossRefGoogle Scholar
  33. Irwin MT, Raharison J-L, Wright PC (2009) Spatial and temporal variability in predation on rainforest primates: do forest fragmentation and predation act synergistically? Anim Conserv 12(3):220–230CrossRefGoogle Scholar
  34. Jungers WL, Demes B, Godfrey LR (2008) How big were the “giant” extinct lemurs of Madagascar. In: Fleagle J, Gilbert C (eds) Elwyn Simons: A Search for Origins. Springer, New York, pp 343–360CrossRefGoogle Scholar
  35. Jungers WL, Godfrey LR, Simons EL, Wunderlich RE, Richmond BG, Chatrath PS (2002) Ecomorphology and behavior of giant extinct lemurs from Madagascar. In: Plavcan JM, Kay RF, Jungers WL, van Schaik CP (eds) Reconstructing Behavior in the Primate Fossil Record. Kluwer Academic/Plenum Publishers, New York, pp 371–411CrossRefGoogle Scholar
  36. Karpanty S, Wright P (2007) Predation on lemurs in the rainforest of Madagascar by multiple predator species: observations and experiments. In: Gursky S, Nekaris K (eds) Primate Anti-Predator Strategies. Springer, New York, pp 77–99CrossRefGoogle Scholar
  37. Kerley LL, Slaght JC (2013) First documented predation of sika deer (Cervus nippon) by golden eagle (Aquila chrysaetos) in Russian Far East. J Raptor Res 47(3):328–330CrossRefGoogle Scholar
  38. Köhncke M, Leonhardt K (1986) Cryptoprocta ferox. Mammal Species 254:1–5Google Scholar
  39. Laborde C (1986) Caractères d’adaptation des membres au mode de vie arboricole chez Cryptoprocta ferox par comparaison avec d’autres Carnivores Viverridés. Ann Sci Nat Zool, Paris 13e série, 8: 25-39Google Scholar
  40. Lamberton C (1939) Contribution à la connaissance de la faune subfossile de Madagascar. Note XIII Les Cryptoprocta fossiles. Mém Acad Malgache 27:155-193 + platesGoogle Scholar
  41. Legendre S, Roth C (1988) Correlation of carnassial tooth size and body weight in recent carnivores (Mammalia). Hist Biol 1: 85–98CrossRefGoogle Scholar
  42. Lührs M-L, Dammhahn M (2010) An unusual case of cooperative hunting in a solitary carnivore. J Ethol 28:379–383CrossRefGoogle Scholar
  43. Lührs M-L, Dammhahn M, Kappeler P (2013) Strength in numbers: males in a carnivore grow bigger when they associate and hunt cooperatively. Behav Ecol 24(1):21–28CrossRefGoogle Scholar
  44. Lührs M-L, Kappeler PM (2013) Simultaneous GPS tracking reveals male associations in a solitary carnivore. Behav Ecol Sociobiol 67(11):1731–1743CrossRefGoogle Scholar
  45. Lyman RL (1994) Vertebrate Taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. McGraw W (2006) Primate remains from African crowned eagle (Stephanoaetus coronatus) nests in Ivory Coast’s Tai Forest: implications for primate predation and early hominid taphonomy in South Africa. Am J Phys Anthropol 131(2):151–165CrossRefPubMedGoogle Scholar
  47. McGraw W, Berger LR (2013) Raptors and primate evolution. Evol Anthropol 22:280–293CrossRefPubMedGoogle Scholar
  48. Meachen-Samuels J, Van Valkenburgh B (2009) Forelimb indicators of prey-size preference in the Felidae. J Morphol 270:729–744CrossRefPubMedGoogle Scholar
  49. Muldoon KM, DeBlieux DD, Simons EL, Chatrath PS (2009) The subfossil occurrence and paleoecological significance of small mammals at Ankilitelo Cave, southwestern Madagascar. J Mammal 90:1111–1131CrossRefGoogle Scholar
  50. Muldoon KM, Godfrey LR, Crowley BE, Simons LE (2017) Predation on subfossil Prolemur simus by multiple predator species at Ankarana Massif, northern Madagascar. Internatl J Primatol 38:58Google Scholar
  51. Njau JK, Blumenschine RJ (2006) A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. J Hum Evol 50(2):142–162Google Scholar
  52. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) Caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5.2Google Scholar
  53. Pagel M (1999) Inferring historical patterns of biological evolution. Nature 401:877–884CrossRefPubMedGoogle Scholar
  54. Patel E (2005) Silky sifaka predation (Propithecus candidus) by a fossa (Cryptoprocta ferox). Lemur News 3(10):25–27Google Scholar
  55. Petit G (1935) Description d’un crâne de Cryptoprocte sub-fossile, suivie de remarques sur les affinités du genre Cryptoprocta. Arch Mus Natl Hist Nat (Paris) 12:621–632Google Scholar
  56. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  57. Rasolonandrasana BPN (1994) Contribution à l’étude de l’alimentation de Cryptoprocta ferox Bennett 1833 dans son milieu naturel à partir d’examens coprologiques dans deux sites: le Parc National No 1 de la Montagne d’Ambre (Nord) et la Concession Forestière du C.F.P.F./ Kirindy Morondava. DEA, University of AntananarivoGoogle Scholar
  58. Sanders WJ, Trapani J, Mitani JC (2003) Taphonomic aspects of crowed hawk-eagle predation on monkeys. J Hum Evol 44:87–105CrossRefPubMedGoogle Scholar
  59. Selvaggio M (1994) Carnivore tooth marks and stone tool butchery marks on scavenged bones – archaeological implications. J Hum Evol 27(1–3):215–228CrossRefGoogle Scholar
  60. Shipman P (1983) Early hominid lifestyles: hunting and gathering or foraging and scavenging? In: Clutton-Brock J (ed) Animals and Archaeology: Hunters and Their Prey. BAR International Series 163, Oxford, pp 21-30Google Scholar
  61. Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BA (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 181–205Google Scholar
  62. Véron G (1995) La position systématique de Cryptoprocta ferox (Carnivora). Analyse cladistique des caractères morphologiques de carnivores Aeluroidea actuels et fossiles. Mammalia 59(4): 551–582CrossRefGoogle Scholar
  63. Wright PC (1998) Impact of predation risk on the behavior of Propithecus diadema edwardsi in the rain forest of Madagascar. Behaviour 135(4):483–512CrossRefGoogle Scholar
  64. Wright PC, Heckscher S, Dunham A (1997) Predation on Milne-Edward's sifaka (Propithecus diadema edwardsi) by the fossa (Cryptoprocta ferox) in the rain forest of southeastern Madagascar. Folia Primatol 68(1):34–43CrossRefPubMedGoogle Scholar
  65. Wroe S, Field J, Fullagar R, Jermin LS (2004) Megafaunal extinction in the late Quaternary and the global overkill hypothesis. Alcheringa 28: 291–331CrossRefGoogle Scholar
  66. Yoder AD, Burns MM, Zehr S, Delefosse T, Véron G, Goodman SM, Flynn JJ (2003) Single origin of Malagasy Carnivora from an African ancestor. Nature 421:734–737CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lindsay Renee Meador
    • 1
    Email author
  • Laurie Rohde Godfrey
    • 1
  • Jean Claude Rakotondramavo
    • 2
  • Lovasoa Ranivoharimanana
    • 2
  • Andrew Zamora
    • 1
  • Michael Reed Sutherland
    • 3
  • Mitchell T. Irwin
    • 4
  1. 1.Department of AnthropologyUniversity of Massachusetts AmherstAmherstUSA
  2. 2.Mention Bassins sédimentaires, Evolution Conservation (BEC), BP 906, Faculté des SciencesUniversité d’AntananarivoAntananarivoMadagascar
  3. 3.Data Science ProgramNew College of FloridaSarasotaUSA
  4. 4.Department of AnthropologyNorthern Illinois UniversityDeKalbUSA

Personalised recommendations