Craniomandibular Variation in the Taxonomically Problematic Gerbil Genus Gerbillus (Gerbillinae, Rodentia): Assessing the Influence of Climate, Geography, Phylogeny, and Size

Original Paper
  • 210 Downloads

Abstract

The taxonomy of Gerbillus, the most speciose gerbil genus, is highly debated. Of particular contention is the relationship of Dipodillus to Gerbillus; some consider it to be a closely related genus, while others synonymize it with Gerbillus—either with or without recognizing it as a subgenus. The main objective of this study is to test the validity of common taxonomic groupings within the Gerbillus-Dipodillus species complex, which was achieved by using geometric morphometrics to examine cranial and mandibular variation in 34 out of the 52 Gerbillus-Dipodillus species. Craniomandibular size and shape were highly correlated, indicating strong allometric patterns in shape variation. The common taxonomic groups were significantly different in craniomandibular size and shape, yet they did overlap considerably in morphospace. A notable exception was the extreme divergence of Monodia (G. mauritaniae) from all other species in the occlusal view of the mandible. Morphospace overlap is likely a consequence of both phylogenetic history and environmental adaptation. Only the ventral cranium was associated with climate, particularly in areas related to resource acquisition. Geographic distance was not significantly associated with craniomandibular morphometric distance, and the groups overlapped greatly in their geographic range. Cranial and mandibular regions differed in discrimination power—the ventral cranium had among the highest, while the dorsal cranium and the occlusal mandible had the lowest. Craniomandibular regions varied in association with climate, phylogeny, and size—previous studies suggest this difference may be a consequence of different genetic controls for shape variation.

Keywords

Crania Desert Dipodillus Geometric morphometrics Skull Systematics 

Supplementary material

10914_2016_9377_Fig7_ESM.gif (143 kb)
Fig. S1

Gerbillus-Dipodillus clade extracted from the Alhajeri et al. (2015) chronogram. Bayesian posterior probabilities (PP) are indicated on the nodes, with unannotated nodes being strongly supported (PP ≥ 0.95). Node bars denote the 95% highest posterior densities. (GIF 143 kb)

10914_2016_9377_MOESM1_ESM.eps (2.1 mb)
High Resolution Image (EPS 2181 kb)
10914_2016_9377_Fig8_ESM.gif (120 kb)
Fig. S2

Principal component analyses performed on the interspecific procrustes coordinates of the (a) combined (all views), (b) ventral cranial, (c) dorsal cranial, (d) lateral cranial, (e) lateral mandibular, and the (f) occlusal mandibular datasets with species arranged according to the taxonomic groupings of Lataste (1881, 1882). Symbols representing different groups are indicated in the second panel. The percentage of explained variance by each PC are also indicated in parentheses. (GIF 119 kb)

10914_2016_9377_MOESM2_ESM.eps (1.2 mb)
High Resolution Image (EPS 1229 kb)
10914_2016_9377_Fig9_ESM.gif (120 kb)
Fig. S3

Principal component analyses performed on the interspecific procrustes coordinates of the (a) combined (all views), (b) ventral cranial, (c) dorsal cranial, (d) lateral cranial, (e) lateral mandibular, and the (f) occlusal mandibular datasets with species arranged according to the taxonomic groupings of Pavlinov (2001, 2008). Symbols representing different groups are indicated in the second panel. The percentage of explained variance by each PC are also indicated in parentheses. (GIF 119 kb)

10914_2016_9377_MOESM3_ESM.eps (1.2 mb)
High Resolution Image (EPS 1236 kb)
10914_2016_9377_Fig10_ESM.gif (185 kb)
Fig. S4

Ventral cranial thin-plate spline deformation grids, depicting of the shape differences between the consensus landmark configuration of the whole sample vs. the consensus landmark configuration of (a) Lataste’s (1881, 1882) Dipodillus, (b) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Gerbillus, (c) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Hendecapleura, (d) Pavlinov’s (2001, 2008) Dipodillus, (e) Pavlinov’s (2001, 2008) Petteromys, (f) Pavlinov’s (2001, 2008) Monodia. Deformations were not magnified. (GIF 185 kb)

10914_2016_9377_MOESM4_ESM.eps (2.9 mb)
High Resolution Image (EPS 2941 kb)
10914_2016_9377_Fig11_ESM.gif (169 kb)
Fig. S5

Dorsal cranial thin-plate spline deformation grids, depicting of the shape differences between the consensus landmark configuration of the whole sample vs. the consensus landmark configuration of (a) Lataste’s (1881, 1882) Dipodillus, (b) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Gerbillus, (c) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Hendecapleura, (d) Pavlinov’s (2001, 2008) Dipodillus, (e) Pavlinov’s (2001, 2008) Petteromys, (f) Pavlinov’s (2001, 2008) Monodia. Deformations were not magnified. (GIF 168 kb)

10914_2016_9377_MOESM5_ESM.eps (2.8 mb)
High Resolution Image (EPS 2842 kb)
10914_2016_9377_Fig12_ESM.gif (175 kb)
Fig. S6

Lateral cranial thin-plate spline deformation grids, depicting of the shape differences between the consensus landmark configuration of the whole sample vs. the consensus landmark configuration of (a) Lataste’s (1881, 1882) Dipodillus, (b) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Gerbillus, (c) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Hendecapleura, (d) Pavlinov’s (2001, 2008) Dipodillus, (e) Pavlinov’s (2001, 2008) Petteromys, (f) Pavlinov’s (2001, 2008) Monodia. Deformations were not magnified. (GIF 174 kb)

10914_2016_9377_MOESM6_ESM.eps (2.9 mb)
High Resolution Image (EPS 2936 kb)
10914_2016_9377_Fig13_ESM.gif (180 kb)
Fig. S7

Lateral mandibular thin-plate spline deformation grids, depicting of the shape differences between the consensus landmark configuration of the whole sample vs. the consensus landmark configuration of (a) Lataste’s (1881, 1882) Dipodillus, (b) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Gerbillus, (c) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Hendecapleura, (d) Pavlinov’s (2001, 2008) Dipodillus, (e) Pavlinov’s (2001, 2008) Petteromys, (f) Pavlinov’s (2001, 2008) Monodia. Deformations were not magnified. (GIF 179 kb)

10914_2016_9377_MOESM7_ESM.eps (2.9 mb)
High Resolution Image (EPS 2970 kb)
10914_2016_9377_Fig14_ESM.gif (144 kb)
Fig. S8

Occlusal mandibular thin-plate spline deformation grids, depicting of the shape differences between the consensus landmark configuration of the whole sample vs. the consensus landmark configuration of (a) Lataste’s (1881, 1882) Dipodillus, (b) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Gerbillus, (c) Lataste’s (1881, 1882) and Pavlinov’s (2001, 2008) Hendecapleura, (d) Pavlinov’s (2001, 2008) Dipodillus, (e) Pavlinov’s (2001, 2008) Petteromys, (f) Pavlinov’s (2001, 2008) Monodia. Deformations were not magnified. (GIF 143 kb)

10914_2016_9377_MOESM8_ESM.eps (2.5 mb)
High Resolution Image (EPS 2573 kb)
10914_2016_9377_MOESM9_ESM.xlsx (12 kb)
Table S1List of specimens digitized in this study. Museum abbreviations are as follows: AMNH = American Museum of Natural History; FMNH = Field Museum of Natural History; MVZ = Museum of Vertebrate Zoology; USNM = United States National Museum of Natural History; UF = University of Florida Museum of Natural History. (XLSX 12 kb)
10914_2016_9377_MOESM10_ESM.xlsx (13 kb)
Table S2Taxonomy of the sampled species according to the most commonly cited authorities of the Gerbillus-Dipodillus group (all cited in the paper). Here and throughout the manuscript, for the purpose of consistency, only the taxonomy of Musser and Carleton (2005) is followed when referring to the species. Several species were described much later than the published classification of Lataste (1881, 1882), and thus were assigned to subgenera in this table based on Musser and Carleton (2005). The last column indicates the three main phylogenetic clades retrieved from the phylogeny of Alhajeri et al. (2015); NA = unsampled species. (XLSX 13 kb)
10914_2016_9377_MOESM11_ESM.docx (19 kb)
Table S3Description of all landmarks used in the study. The numbers preceding the landmarks match the numbers in Fig. 1. (DOCX 19 kb)
10914_2016_9377_MOESM12_ESM.xlsx (10 kb)
Table S4List of reference and target specimens used in the missing data estimation procedure. (XLSX 10 kb)
10914_2016_9377_MOESM13_ESM.xlsx (203 kb)
Table S5Average morphometric, climatic, and geographic data for all gerbil species used in this study. (XLSX 203 kb)
10914_2016_9377_MOESM14_ESM.xlsx (12 kb)
Table S6Output of Tukey‘s HSD test, indicating the significance of the pairwise differences in centroid size means (based on the five individual datasets and the concatenated dataset) among the taxonomic groups of Lataste (1881, 1882). The difference in the observed means along with the P-value, adjusted for the multiple comparisons, are shown. Significant P-values are indicated in bold. (XLSX 12 kb)
10914_2016_9377_MOESM15_ESM.xlsx (13 kb)
Table S7Output of Tukey‘s HSD test, indicating the significance of the pairwise differences in centroid size means (based on the five individual datasets and the concatenated dataset) among the taxonomic groups of Pavlinov (2001, 2008). The difference in the observed means along with the P-value, adjusted for the multiple comparisons, are shown. Significant P-values are indicated in bold. (XLSX 13 kb)

References

  1. Abiadh A, Chetoui M, Lamine-Cheniti T, Capanna E, Colangelo P (2010a) Molecular phylogenetics of the genus Gerbillus (Rodentia, Gerbillinae): implications for systematics, taxonomy and chromosomal evolution. Mol Phylogenet Evol 56:513–518. doi:10.1016/j.ympev.2010.04.018 CrossRefPubMedGoogle Scholar
  2. Abiadh A, Colangelo P, Capanna E, Lamine-Cheniti T, Chetoui M (2010b) Morphometric analysis of six Gerbillus species (Rodentia, Gerbillinae) from Tunisia. C R Biol 333:680–7. doi:10.1016/j.crvi.2010.07.003 CrossRefPubMedGoogle Scholar
  3. Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63:685–697. doi:10.1093/sysbio/syu030 CrossRefPubMedGoogle Scholar
  4. Adams DC, Otárola-Castillo E (2013) Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399. doi:10.1111/2041-210X.12035 CrossRefGoogle Scholar
  5. Alhajeri BH (2016) A phylogenetic test of the relationship between saltation and habitat openness in gerbils (Gerbillinae, Rodentia). Mammal Res 1–11. doi:10.1007/s13364-016-0264-2
  6. Alhajeri BH, Hunt OJ, Steppan SJ (2015) Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla. J Zool Syst Evol Res 53:312–330. doi:10.1111/jzs.12102 CrossRefGoogle Scholar
  7. Allen G (1939) A checklist of African mammals. Bull Mus Comp Zool Harvard Univ 83:1–763Google Scholar
  8. Álvarez A, Perez SI (2013) Two- versus three-dimensional morphometric approaches in macroevolution: insight from the mandible of caviomorph rodents. Evol Biol 40:150–157. doi:10.1007/s11692-012-9194-3 CrossRefGoogle Scholar
  9. Beolchini F, Corti M (2004) The taxonomy of the genus Tachyoryctes: a geometric morphometric approach. Ital J Zool 71:35–43. doi:10.1080/11250000409356548 CrossRefGoogle Scholar
  10. Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745CrossRefPubMedGoogle Scholar
  11. Bohoussou HK, Akpatou BK, Kadjo B, Soulemane O, N’Goran EK, Nicolas V (2014) Morphometric variation in the forest rodent Malacomys edwardsi (Rodentia: Muridae) in Côte d’Ivoire. J Appl Biosci 80:7014–7023CrossRefGoogle Scholar
  12. Cano ARG, Fernández MH, Alvarez-Sierra MÁ (2013) Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach. PLoS One 8:e79080. doi:10.1371/journal.pone.0079080 CrossRefGoogle Scholar
  13. Cardini A (2003) The geometry of the marmot (Rodentia: Sciuridae) mandible: phylogeny and patterns of morphological evolution. Syst Biol 52:186–205CrossRefPubMedGoogle Scholar
  14. Cardini A, O’Higgins P (2004) Patterns of morphological evolution in Marmota (Rodentia, Sciuridae): geometric morphometrics of the cranium in the context of marmot phylogeny, ecology and conservation. Biol J Linn Soc 82:385–407CrossRefGoogle Scholar
  15. Casanovas-Vilar I, van Dam J (2013) Conservatism and adaptability during squirrel radiation: what is mandible shape telling us? PLoS One 8:e61298. doi:10.1371/journal.pone.0061298 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Caumul R, Polly PD (2005) Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59:2460–2472CrossRefPubMedGoogle Scholar
  17. Chevret P, Dobigny G (2005) Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Mol Phylogenet Evol 35:674–688CrossRefPubMedGoogle Scholar
  18. Claude J (2008) Morphometrics with R. Springer, New YorkGoogle Scholar
  19. Colangelo P, Castiglia R, Franchini P, Solano E (2010) Pattern of shape variation in the eastern African gerbils of the genus Gerbilliscus (Rodentia, Muridae): environmental correlations and implication for taxonomy and systematics. Mammal Biol - Z Saugetierk 75:302–310. doi:10.1016/j.mambio.2009.05.001 CrossRefGoogle Scholar
  20. Corbet GB (1978) The Mammals of the Palaearctic Region: A Taxonomic Review. British Museum (Natural History), LondonGoogle Scholar
  21. de Winton WE (1902) Descriptions of two new gerbils from Egypt. Ann Mag Nat Hist London Ser 7 9:45–47Google Scholar
  22. Dobigny G, Baylac M, Denys C (2002) Geometric morphometrics, neural networks and diagnosis of sibling Taterillus species (Rodentia, Gerbillinae). Biol J Linn Soc 77:319–327. doi:10.1046/j.1095-8312.2002.00074 CrossRefGoogle Scholar
  23. dos Reis SF, Duarte LC, Monteiro LR, von Zuben FJ (2002) Geographic variation in cranial morphology in Thrichomys apereoides (Rodentia: Echimyidae). I. Geometric descriptors and patterns of variation in shape. J Mammal 83:333–344CrossRefGoogle Scholar
  24. Ellerman JR (1940) The Families and Genera of Living Rodents. British Museum (Natural History), LondonGoogle Scholar
  25. Ellerman J, Morrison-Scott T (1951) Checklist of Palaearctic and Indian Mammals 1758 to 1946. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  26. Fernandes FA, Fornel R, Cordeiro-Estrela P, Freitas TRO (2009) Intra- and interspecific skull variation in two sister species of the subterranean rodent genus Ctenomys (Rodentia, Ctenomyidae): coupling geometric morphometrics and chromosomal polymorphism. Zool J Linn Soc 155:220–237. doi:10.1111/j.1096-3642.2008.00428 CrossRefGoogle Scholar
  27. Fornel R, Cordeiro-Estrela P, De Freitas TRO (2010) Skull shape and size variation in Ctenomys minutus (Rodentia: Ctenomyidae) in geographical, chromosomal polymorphism, and environmental contexts. Biol J Linn Soc 101:705–720. doi:10.1111/j.1095-8312.2010.01496 CrossRefGoogle Scholar
  28. GBIF (2016) GBIF data portal. http://www.gbif.net/
  29. Ge D, Xia L, Yao L, Zhang Z, Yang Q (2015) Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib Zool 84:267–284Google Scholar
  30. Harrison DL (1967) Observation on some rodents from Tunisia with some description of new gerbil (Gerbillinae, Rodentia). Mammalia 31:381–389. doi:10.1515/mamm.1967.31.3.381 CrossRefGoogle Scholar
  31. Hautier L, Lebrun R, Saksiri S, Michaux J, Vianey-Liaud M, Marivaux L (2011) Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS One 6:e18698. doi:10.1371/journal.pone.0018698 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Heim de Balsac H (1943) Genre nouvelle au de rongeur (Gerbillinae) de Mauritanie. Bull Mus Natl Hist Nat Ser 2 15:287–288Google Scholar
  33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Internatl J Clim 25:1965–1978CrossRefGoogle Scholar
  34. Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS Version 7.5. A geographic information system for the analysis of species distribution data. Manual available at http://www.diva-gis.org/
  35. Ito M, Jiang W, Sato JJ, Zhen Q, Jiao W, Goto K, Sato H, Ishiwata K, Oku Y, Chai JJ, Kamiya, H (2010) Molecular phylogeny of the subfamily Gerbillinae (Muridae, Rodentia) with emphasis on species living in the Xinjiang-Uygur autonomous region of China and based on the mitochondrial cytochrome b and cytochrome c oxidase subunit II genes. Zool Sci 27:269–278CrossRefPubMedGoogle Scholar
  36. IUCN (2015) IUCN Red List of Threatened Species. Version 2015.2. http://www.iucnredlist.org/
  37. Kingdon J, Happold D, Butynski T, Hoffmann M, Happold M, Kalina J (2013) Mammals of Africa, volumes 1–6. A&C Black, LondonGoogle Scholar
  38. Lalis A, Baylac M, Cosson JF, Makundi RH, Machang’u RS, Denys C (2009) Cranial morphometric and fine scale genetic variability of two adjacent Mastomys natalensis (Rodentia: Muridae) populations. Acta Theriol 54:171–181. doi:10.1007/BF03193173 CrossRefGoogle Scholar
  39. Lataste F (1881) Mammifères nouveaux d’Algérie (suite). Le Nat 3:497–500Google Scholar
  40. Lataste F (1882) Mammifères nouveaux d’Algérie (suite). Le Nat 2:126–127Google Scholar
  41. Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of Gerbillinae rodents. J Morphol 138:41–120CrossRefPubMedGoogle Scholar
  42. Lay DM (1983) Taxonomy of the genus Gerbillus (Rodentia: Gerbillinae) with comments on the applications of generic and subgeneric names and an annoted list of species. Z Säugetierkd 48:329–354Google Scholar
  43. Lay DM, Agerson K, Nadler CF (1975) Chromosomes of some species of Gerbillus (Mammalia: Rodentia). Z Säugetierkd 40:141–151Google Scholar
  44. Legendre P, Legendre L (1998) Numerical Ecology, 2nd Edition. Elsevier, AmsterdamGoogle Scholar
  45. Lu X, Ge D, Xia L, Huang C, Yang Q (2014) Geometric morphometric study of the skull shape diversification in Sciuridae (Mammalia, Rodentia). Integr Zool 9:231–245. doi:10.1111/1749-4877.12035 CrossRefPubMedGoogle Scholar
  46. Mares MA (1975) South American mammal zoogeography : evidence from convergent evolution in desert rodents. Proc Natl Acad Sci USA 72:1702–1706CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mares MA (1976) Convergent evolution of desert rodents: multivariate analysis and zoogeographic implications. Paleobiology 2:39–63CrossRefGoogle Scholar
  48. Musser GM, Carleton MD (1993) Family Muridae. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed. Smithsonian Institution, Washington, pp 501–756Google Scholar
  49. Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. The Johns Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  50. Ndiaye A, Bâ K, Aniskin V, Benazzou T, Chevret P, Konečný A, Sembène M, Tatard C, Kergoat GJ, Granjon L (2012) Evolutionary systematics and biogeography of endemic gerbils (Rodentia, Muridae) from Morocco: an integrative approach. Zool Scripta 41:11–28. doi:10.1111/j.1463-6409.2011.00501 CrossRefGoogle Scholar
  51. Nicola PA, Monteiro LR, Pessôa LM, Von Zuben FJ, Rohlf FJ, dos Reis SF (2003) Congruence of hierarchical, localized variation in cranial shape and molecular phylogenetic structure in spiny rats, genus Trinomys (Rodentia: Echimyidae). Biol J Linn Soc 80:385–396. doi:10.1046/j.1095-8312.2003.00245 CrossRefGoogle Scholar
  52. Nowak RM (1999) Walker’s Mammals of the World, 6th ed. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  53. Ojeda RA, Borghi CE, Diaz GB, Giannoni SM, Mares MA, Braun JK (1999) Evolutionary convergence of the highly adapted desert rodent Tympanoctomys barrerae (Octodontidae). J Arid Environ 41:443–452CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan/
  55. Pavlinov IJA (2001) Current concepts of gerbillid phylogeny and classification. In: Denys C, Granjon L, Poulet A (eds) African Small Mammals. Editions IRD, Paris, pp 141–150Google Scholar
  56. Pavlinov IY (2008) A Review of Phylogeny and Classification of Gerbillinae. Moscow University Publishing, MoscowGoogle Scholar
  57. Pavlinov IY, Dubrovsky YA, Rossolimo OL, Potapova EG (1990) Gerbils of the World. Nauka, MoscowGoogle Scholar
  58. Petter F (1959) Evolution du dessin de la surface d’usure des molaires des Gerbillidés. Mammalia 23:304–315. doi:10.1515/mamm.1959.23.3.304 Google Scholar
  59. Petter F (1975) Subfamily Gerbillinae. Part 6.3. In: Meester J, Setzer HW (eds) The Mammals of Africa: An Identification Manual. Smithsonian Institution, Washington, D.C., pp 7–12Google Scholar
  60. Quintela FM, Fornel R, Freitas TRO (2016) Geographic variation in skull shape of the water rat Scapteromys tumidus (Cricetidae, Sigmodontinae): isolation-by-distance plus environmental and geographic barrier effects? An Acad Bras Cienc. doi:10.1590/0001-3765201620140631 Google Scholar
  61. R Development Core Team (2016) R: A Language and Environment for Statistical ComputingGoogle Scholar
  62. Renaud S, Michaux J, Schmidt DN, Aguilar J-P, Mein P, Auffray J-C (2005) Morphological evolution, ecological diversification and climate change in rodents. Proc Roy Soc Lond B: Biol Sci 272:609–17. doi:10.1098/rspb.2004.2992 CrossRefGoogle Scholar
  63. Robertson RA, Shadle AR (1954) Osteologic criteria of age in beavers. J Mammal 35:197–203CrossRefGoogle Scholar
  64. Roche J (1975) A propos des petites gerbilles a soles plantaires nues (sous-genre Hendecapleura) de est African. Ital J Zool 13:263–268Google Scholar
  65. Rohlf FJ (2010) tpsDig. Version 2.16. Department of Ecology and Evolution, State University of New York, Stony BrookGoogle Scholar
  66. Rohlf FJ (2015) The tps series of software. Hystrix 26:1–4. doi:10.4404/hystrix-26.1-11264 Google Scholar
  67. Rohlf FJ, Corti M (2000) Use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753. doi:10.1080/106351500750049806 CrossRefPubMedGoogle Scholar
  68. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59. doi:10.2307/2992207 Google Scholar
  69. Samuels JX (2009) Cranial morphology and dietary habits of rodents. Zool J Linn Soc 156:864–888. doi:10.1111/j.1096-3642.2009.00502 CrossRefGoogle Scholar
  70. Sowell J (2001) Desert Ecology: An Introduction to Life in the Arid Southwest. University of Utah Press, UtahGoogle Scholar
  71. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167. doi:10.1093/bioinformatics/btm069 CrossRefPubMedGoogle Scholar
  72. Steppan SJ (1997) Phylogenetic analysis of phenotypic covariance structure. I. Contrasting results from matrix correlation and common principal component analysis. Evolution 51:571–586. doi:10.2307/2411129
  73. Tabatabaei Yazdi F, Adriaens D, Darvish J (2012) Geographic pattern of cranial differentiation in the Asian midday jird Meriones meridianus (Rodentia: Muridae: Gerbillinae) and its taxonomic implications. J Zool Syst Evol Res 50:157–164. doi:10.1111/j.1439-0469.2011.00642 CrossRefGoogle Scholar
  74. Tabatabaei Yazdi F, Colangelo P, Adriaens D (2014) Testing a long-standing hypothesis on the relation between the auditory bulla size and environmental conditions: a case study in two jird species (Muridae: Meriones libycus and M. crassus). Mammalia 79:185–200. doi:10.1515/mammalia-2013-0043 Google Scholar
  75. Thomas O (1902) New species of Dipodillus and Psammomys. Ann Mag Nat Hist London, Ser 7 9:362–365Google Scholar
  76. Tong H (1989) Origine et évolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Mém Soc Géol Fr 155:1–120Google Scholar
  77. Ward D (2009) The Biology of Deserts. Oxford University Press, OxfordGoogle Scholar
  78. Wassif K, Lutey RG, Wassif S (1969) Morphological cytological and taxonomic studies of the rodent genera Gerbillus and Dipodillus from Egypt. Proc Egypt Acad Sci 22:77–93Google Scholar
  79. Webster D, Webster M (1975) Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. J Morphol 146:343–376CrossRefPubMedGoogle Scholar
  80. Wilson LAB (2013) Geographic variation in the greater Japanese shrew-mole, Urotrichus talpoides: combining morphological and chromosomal patterns. Mammal Biol - Z Säugetierk 78:267–275. doi:10.1016/j.mambio.2012.09.003 CrossRefGoogle Scholar
  81. Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  82. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  83. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesKuwait UniversitySafatKuwait

Personalised recommendations