Advertisement

Journal of Mammalian Evolution

, Volume 24, Issue 1, pp 111–125 | Cite as

A New Pliocene Capybara (Rodentia, Caviidae) from Northern South America (Guajira, Colombia), and its Implications for the Great American Biotic Interchange

  • María E. Pérez
  • María C. Vallejo-Pareja
  • Juan D. Carrillo
  • Carlos Jaramillo
Original Paper

Abstract

One of the most striking components of the modern assemblage of South American mammals is the semiaquatic capybara (Caviidae, Hydrochoerinae), the biggest rodent in the world. The large hydrochoerines are recorded from the middle Miocene to the present, mainly in high latitudes of South America. Although less known, they are also recorded in low latitudes of South America, and in Central and North America. We report the first record of capybaras from the late Pliocene of Colombia, found in deposits of the Ware Formation, Guajira Peninsula in northeastern Colombia. We analyze the phylogenetic position within Caviidae, the possible environmental changes in the Guajira Peninsula, and the implications of this finding for the understanding of the Great American Biotic Interchange. The morphological and phylogenetic analyses indicate that the hydrochoerine of the Guajira Peninsula is a new species, ?Hydrochoeropsis wayuu, and this genus is most closely related to Phugatherium. According to the latest phylogenetic results, this clade is the sister group of the lineage of the recent capybaras (Neochoerus and Hydrochoerus). ?Hydrochoeropsis wayuu is the northernmost South American Pliocene hydrochoerine record and the nearest to the Panamanian bridge. The presence of this hydrochoerine, together with the fluvio-deltaic environment of the Ware Formation, suggests that during the late Pliocene, the environment that dominated the Guajira Peninsula was more humid and with permanent water bodies, in contrast with its modern desert habitats.

Keywords

Caviomorphs Hydrochoerinae Neogene Neotropics Phylogeny GABI 

Notes

Acknowledgments

We thank François Pujos and Pierre-Olivier Antoine for inviting us to submit a manuscript for the special issue (TREMA Symposium on Cenozoic evolution of Tropical-Equatorial mammals; IPC 4, Mendoza, 2014). Thanks to María Guiomar Vucetich and Cecilia Deschamps (MLP) for critical comments that enhanced the quality of this manuscript, and Bruce Patterson for access to Zoology Collection of FMNH. We are grateful to support from the Smithsonian Institution, the National Geographic Society, Universidad del Norte, the Anders Foundation, Gregory D. and Jennifer Walston Johnson, Marcelo R. Sánchez-Villagra and the Evolutionary Morphology and Palaeobiology of Vertebrates group at the University of Zurich, the Swiss National Science Foundation (SNF 31003 A-149605 to M.R. Sánchez-Villagra), and the National Science Foundation (grant EAR 0957679). Thanks to Carlos Rosero for managing all the logistics in the field, and to Liliana Londoño and Maria Inés Barreto for administrative and logistic support. Thanks to the Wayúu community for allowing us access to their lands and for their support during the field work, the Colombian National Police (Castilletes base), and all the members of the field team, in particular F. Moreno, J.W. Moreno, and V. Zapata, who found the first specimens.

Supplementary material

10914_2016_9356_MOESM1_ESM.pdf (63 kb)
Online Resource 1 Combined matrix of morphological and molecular dataset from Madozzo-Jaén and Pérez (2016). (PDF 63 kb)
10914_2016_9356_MOESM2_ESM.pdf (162 kb)
Online Resource 2 Morphological character list from Madozzo-Jaén and Pérez (2016). (PDF 161 kb)
10914_2016_9356_MOESM3_ESM.pdf (251 kb)
Online Resource 3 Unambiguous synapomorphies list. (PDF 251 kb)
10914_2016_9356_MOESM4_ESM.pdf (171 kb)
Online Resource 4 List of the most derived hydrochoerines taxa and occurrences downloaded from the Paleobiology Database (PDF 170 kb)

References

  1. Aeschbach M, Carrillo JD, Sánchez-Villagra MR (in press) On the growth of the largest living rodent: postnatal skull and dental shape changes in capybara species (Hydrochoerus spp.) Mammal Biol. doi: 10.1016/j.mambio.2016.02.010
  2. Aldana-Dominguez J, Vieira-Muñoz MI, Bejarano P (2013) Conservation and use of the capybara and lesser capybara in Colombia. In: Moreira JR, Barros Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara. Biology, Use and Conservation of an Exceptional Neotropical Species. Springer, USA, pp 321–332Google Scholar
  3. Alroy J (2013) North American Fossil Mammal Systematics. Paleobiology Database. http://paleobiodb.org/cgi-bin/bridge.pl?page=OSA_3_North_American_mammals. Accessed Apr 23 2015
  4. Ameghino F (1902) Notas sobre algunos mamíferos fósiles nuevos o poco conocidos del valle de Tarija. An Mus Nac Buenos Aires, Serie 3 10:225–261Google Scholar
  5. Amson E, Carrillo JD, Jaramillo C (in press) Neogene sloth assemblages (Mammalia, Pilosa) of the Cocinetas basin (La Guajira, Colombia): implications for the Great American Biotic Interchange. PaleontologyGoogle Scholar
  6. Bacon CD, Silvestro D, Jaramillo C, Tilston Smith B, Chakrabarty P (2015) Biological evidence supports an early and complex emergence of the isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bacon CD, Molnar P, Antonelli A, Crawford AJ, Montes C, Vallejo-Pareja MC (2016) Quaternary glaciation and the Great American Biotic Interchange. Geology. doi: 10.1130/G37624.1 Google Scholar
  8. Baskin JA, Thomas RG (2007) South Texas and the Great American Interchange. Gulf Coast Association of Geological Societies Transactions 57:37–45Google Scholar
  9. Bondesio P (1975) Restos de un Protohydrochoerinae (Rodentia, Hydrochoeridae) en el “Mesopotamiense” (Plioceno Medio-Tardío) de las barrancas del río Paraná (Provincia de Entre Ríos, Argentina). Ameghiniana 12:253–258Google Scholar
  10. Bowdich TE (1821) An Analysis of the Natural Classifications of Mammalia for the use of Students and Travelers. Smith, Paris, 115 ppGoogle Scholar
  11. Candela AM (2005) Los roedores del “Mesopotamiense” (Mioceno tardío, Formación Ituzaingó) de la provincia de Entre Ríos (Argentina). Temas de la Biodiversidad del Litoral fluvial argentino II, INSUGEO, Miscelánea, 14:37–48Google Scholar
  12. Carranza-Castañeda O, Miller WE (1988) Roedores caviomorfos de la Mesa Central de México, Blancano temprano (Plioceno tardío) de la fauna local Rancho Viejo, Estado de Guanajuato. Universidad Nacional Autónoma de México, Instituto de Geología Revista 7:182–199Google Scholar
  13. Carrillo JD, Forasiepi AM, Jaramillo C, Sánchez-Villagra MR (2015) Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Front Genet. doi: 10.3389/fgene.2014.00451
  14. Carrillo JD, Sánchez-Villagra MR (2015) Giant rodents from the Neotropics: diversity and dental variation of late Miocene neoepiblemid remains from Urumaco, Venezuela. Paläontol Z. doi: 10.1007/s12542–015–0267-3 Google Scholar
  15. Deschamps CM, Olivares AI, Vieytes EC, Vucetich MG (2007) Ontogeny and diversity of the oldest capybaras (Rodentia, Hydrochoeridae; late Miocene of Argentina). J Vertebr Paleontol 27:683–692CrossRefGoogle Scholar
  16. Deschamps CM, Vieytes EM, Olivares AI, Vucetich MG (2009) Primer registro de Cardiatherium chasicoense (Rodentia, Hydrochoeridae) fuera del área pampeana (Argentina) y su valor bioestratigráfico. Ameghiniana 46:295–305Google Scholar
  17. Deschamps CM, Vucetich MG, Montalvo CI, Zárate MA (2013) Capybaras (Rodentia, Hydrochoeridae, Hydrochoerinae) and their bearing in the calibration of the late Miocene-Pliocene sequences of South America. J S Am Earth Sci 48:145–158CrossRefGoogle Scholar
  18. Eisenberg JF, Redford KH (2000) Mammals of the Neotropics. The Central Neotropics: Ecuador, Peru, Bolivia, Brazil. Vol. 3. The University of Chicago Press, ChicagoGoogle Scholar
  19. Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ (2011) Fracturing of the Panamanian isthmus during initial collision with South America. Geology 39:1007–1010CrossRefGoogle Scholar
  20. Fisher von Waldheim G (1817) Adversaria zoologica, 1 Mémoires de la Société Impériale des Naturalistes de Moscou 5:357–446Google Scholar
  21. Forasiepi AM, Soibelzon LH, Suarez-Gomez C, Sánchez R, Quiroz LI, Jaramillo C, Sánchez-Villagra MR (2014) Carnivorans at the great American biotic interchange: new discoveries from the northern Neotropics. Naturwissenschaften 101:965–974CrossRefPubMedGoogle Scholar
  22. Frailey CD (1986) Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Río acre region, western Amazonia. Nat Hist Mus Los Angeles County Contrib Sci 374:1–46Google Scholar
  23. García-Esponda C, Candela AM (2016) Hindlimb musculature of the largest living rodent Hydrochoerus hydrochaeris (Caviomorpha): adaptations to semiaquatic and terrestrial styles of life. J Morphol 277:286–305CrossRefPubMedGoogle Scholar
  24. Garzoine CN, Hoke DG, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307CrossRefGoogle Scholar
  25. Ghizzoni M (2014) Estimación de la masa corporal de un ejemplar cuaternario del carpincho extinto Neochoerus a través de medidas cráneo-dentales. Rev Brasilera Paleontol 17:83–90CrossRefGoogle Scholar
  26. Gill T (1872) Arrangements of the families of mammals with analytical tables. Smithson Misc Coll 11:1–998Google Scholar
  27. Gray JE (1825) An outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe. Ann Philos (n ser) 10:337–344Google Scholar
  28. Haffer J (1967) Speciation in Colombian forest birds west of the Andes. Am Mus Novitates 2294:1–57Google Scholar
  29. Hendy A, Jones DS, Moreno F, Zapata V, Jaramillo C (2015) Neogene molluscs, shallow-marine paleoenvironments and chronostratigraphy of the Guajira Peninsula, Colombia. Swiss J Palaeontol doi: 10.1007/s13358–015–0074-1:1–31 Google Scholar
  30. Herrera EA (2012) Capybara social behavior and use of space: patterns and processes. In: Moreira JR, Barros Ferraz, KMPMB, Herrera EA, Macdonald DW (eds) Capybara. Biology, Use and Conservation of an Exceptional Neotropical Species. Springer, USA, pp 195–207Google Scholar
  31. IUCN (International Union for Conservation of Nature) (2008). Hydrochoerus isthmius and Hydrochoerus hydrochaeris. The IUCN Red List of Threatened Species. Version 2014.3Google Scholar
  32. Kraglievich L (1930) La formación friaseana del río Frías, río Fenix, laguna Blanca, etc. y su fauna de mamíferos. Physis 10:127–161Google Scholar
  33. Kerber L, Ribeiro AM (2012) Capybaras (Rodentia: Hystricognathi: Hydrochoeridae) from the late Pleis‐tocene of southern Brazil. Neues Jahrbuch für Geologie und Paläontologie Abhandlung 261:1–18Google Scholar
  34. MacPhee RDE, Singer R, Diamond M (2000) Late Cenozoic land mammals from Grenada, Lesser Antilles island-arc. Am Mus Novitates 3302:1–20CrossRefGoogle Scholar
  35. Madozzo-Jaén MC, Pérez ME (2016) The most ancient caviine rodent (Hystricognathi, Cavioidea) comes from the late Miocene of northwest Argentina (South America). Hist Biol. doi: 10.1080/08912963.2016.1166360 Google Scholar
  36. Mares MA, Ojeda RA (1982) Patterns of diversity and adaptation in South American Hystricognath rodents. In: Mares MA, Genoways HH (eds) Mammalian Biology in South America. University of Pittsburgh, pp 393–432Google Scholar
  37. Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91:11–18CrossRefGoogle Scholar
  38. Mones A (1991) Monografía de la Familia Hydrochoeridae (Mammalia, Rodentia). Sistemática–Paleontología–Bibliografía. Courier Forschungsinstitut Senckenberg 134:1–235Google Scholar
  39. Mones A, Ojasti J (1986) Hydrochoerus hydrochaeris. Mammal Species 264:1–7CrossRefGoogle Scholar
  40. Montes CA, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the central American seaway. Science 348: 226–229CrossRefPubMedGoogle Scholar
  41. Moreira JR, Alvarez MR, Tarifa T, Pacheco V, Taber A, Tirira DG, Herrera EA, Ferraz KMPMB, Aldana-Domínguez J, MacDonald DW (2013) Taxonomy, natural history and distribution of the capybara. In: Moreira J R, Barros Ferraz KMPM, Herrera EA, Macdonald DW (eds) Capybara: Biology, Use and Conservation of a Valuable Neotropical Resource. Springer, USA, pp 3–39Google Scholar
  42. Moreno F, Hendy A J, Quiroz L, Hoyos N, Jones DS, Zapata V, Zapata S, Ballen GA, Cadena E, Cárdenas AL, Carrillo-Briceño JD, Carrillo JD, Delgado-Sierra D, Escobar J, Martínez JI, Martínez C, Montes C, Moreno J, Pérez N, Sánchez R, Suárez C, Vallejo-Pareja MC, Jaramillo C (2015) Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia. Swiss J Palaeontol. doi: 10.1007/s13358–015–0071-4 Google Scholar
  43. Moreno-Bernal JW, Head J, Jaramillo CA (2016) Fossil crocodilians from the high Guajira Peninsula of Colombia: Neogene faunal change in the northernmost South America. J Vertebr Paleontol doi: 10.1080/02724634.2016.1110586 Google Scholar
  44. Morgan GS (2005) The Great American Biotic Interchange in Florida. Bull Florida Mus Nat Hist 45:271–311Google Scholar
  45. Morgan GS (2008) Vertebrate fauna and geochronology of the Great American Biotic Interchange in North America. In: Lucas SG, Morgan GS, Spielmann JA, Prothero DR (eds) Neogene Mammals. New Mexico Mus Nat Hist Sci Bull 44:93–140Google Scholar
  46. Morgan FG, Emslie SD (2010) Tropical and western influences in vertebrate faunas from the Pliocene and Pleistocene of Florida Quaternary International 217:143–158Google Scholar
  47. Morrone JJ (2014) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30:202–214.CrossRefGoogle Scholar
  48. Ojasti J (2011) Estudio biológico del chigüire o capibara. 2nd edition. Editorial Equinoccio, CaracasGoogle Scholar
  49. Oliver A, Sachser N (2011) Diversity of social and mating systems in cavies: a review. J Mammal 92: 9–53. doi: 10.1644/09-MAMM-S-405.1 Google Scholar
  50. Patterson BD, Costa LP (2012) Introduction to the history and geography of Neotropical mammals. In: Patterson BD, Costa LP (eds) Bones, Clones and Biomes. The History and Geography of Recent Neotropical Mammals. The University of Chicago Press, Chicago, pp 1–5. doi: 10.7208/chicago/9780226649214.003.0015 CrossRefGoogle Scholar
  51. Patton JL (2015) Suborder Hystricomorpha. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2. The University of Chicago Press, Chicago, pp 688–1290Google Scholar
  52. Pérez ME, Vucetich MG, Deschamps CM (2014) Mandibular remains of Procardiomys martinoi Pascual, 1961 (Hystricognathi, Cavioidea) from the Arroyo Chasicó Formation (early late Miocene) of Argentina: anatomy and the philogenetic position of the genus within Caviidae. Hist Biol 26:16–25Google Scholar
  53. Pol D, Escapa I (2009) Unstable taxa in cladistic analysis: identification and the assessment of relevant characters. Cladistics 25:1–13CrossRefGoogle Scholar
  54. Reguero MA, Candela AM, Alonso R (2007) Biochronology and biostratigraphy of the Uquía Formation (Pliocene–early Pleistocene, NW Argentina) and its significance in the Great American Biotic Interchange. J S Am Earth Sci 23:1–16Google Scholar
  55. Reig OA (1952) Nuevos datos descriptivos sobre Chapalmatherium novum Ameghino. Rev Mus Municipal Cie Nat Trad Mar del Plata I:105–117Google Scholar
  56. Rovereto C (1914) Los Estratos Araucanos y sus fósiles. An Mus Nac Hist Nat 25:1–147Google Scholar
  57. Rowe D, Honeycutt R (2002) Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavioidea (Mammalia, Rodentia). Mol Biol Evol 19:263–277CrossRefPubMedGoogle Scholar
  58. Sánchez-Villagra MR, Aguilera O, Horovitz I (2003) The anatomy of the world’s largest extinct rodent. Science 301(5640):1708–1710CrossRefPubMedGoogle Scholar
  59. Sant’anna-Filho M J (1994) Roedores do Neógeno do Alto Juruá, Estado do Acre, Brasil. Master Dissertation, Universidade Federal do Rio Grande do Sul, Porto AlegreGoogle Scholar
  60. Simpson GG (1928) Pleistocene mammals from a cave in Citrus County, Florida. Am Mus Novitates 328:1–16Google Scholar
  61. Soibelzon LH, Tonni EP, Bond M (2005) The fossil record of South American short-faced bears (Ursidae, Tremarctinae) J S Am Earth Sciences 20:105–113Google Scholar
  62. Solari S, Velazco PM, Patterson BD (2012) Hierarchical Organization of Neotropical Mammal Diversity and its Historical Basis. In: Patterson BD, Costa LP (eds) Bones, Clones and Biomes. The History and Geography of Recent Neotropical Mammals.The University of Chicago Press. Chicago, pp 145–156 doi: 10.7208/chicago/9780226649214.003.0015
  63. Tonni EP, Soibelzon E, Cione AL, Carlini AA, Scillato Yané GJ, Zurita AE, Paredes Ríos F (2009) Preliminar correlationof the Pleistocene sequences of the Tarija valley (Bolivia) with the Pampean chronological standard. Quaternary International 210: 57–65Google Scholar
  64. Tullberg T (1899) Ueber das System der Nagethiere, eine phylogenetische Studie. Nova Acta Regiae Societatis Scientiarum Upsalensis (3) 18 (2, Sectio Medica et Historiae Naturalis):1–514Google Scholar
  65. Villarroel AC, Brieva J, Cadena A (1996) La Fauna de Mamíferos Fosiles del Pleistoceno de Jutua, Municipio de Soata (Boyaca, Colombia). Geología Colombiana 21:81–87Google Scholar
  66. Villarroel AC, Concha AE, Macia C (2001) El Lago Pleistoceno de Soata (Boyaca, Colombia): Consideraciones esratigráficas, paleontológicas y paleoecológicas. Geología Colombiana 26:79–93Google Scholar
  67. Vizcaíno SF, Cassini GH, Toledo N, Bargo MS (2012) On the evolution of large size in mammalian herbivores of Cenozoic faunas of southern South America. In: Patterson BD, Costa LP (eds) Bones, Clones and Biomes. The History and Geography of Recent Neotropical Mammals. The University of Chicago Press, Chicago, pp 76–101. doi: 10.7208/chicago/9780226649214.003.0015 CrossRefGoogle Scholar
  68. Vucetich MG, Arnal M, Deschamps CM, Pérez ME, Vieytes EC (2015a) A brief history of caviomorph rodents as told by the fossil record. In: Vassallo A, Antonucci D (eds) Biology of Caviomorph Rodents; Diversity and Evolution. Sociedad Argentina para el estudio de los Mamíferos, ArgentinaGoogle Scholar
  69. Vucetich MG, Carlini AA, Aguilera O, Sánchez-Villagra MR (2010) The tropics as reservoir of otherwise extinct mammals: the case of rodents from a new Pliocene faunal assemblage from northern Venezuela. J Mammal Evol 17:265–273Google Scholar
  70. Vucetich MG, Deschamps CM, Olivares AI, Dozo MT (2005) Capybaras, shape, size and time: a model kit. Acta Palaeontol Pol 50:259–272Google Scholar
  71. Vucetich MG, Deschamps CM, Pérez ME (2012) Palaeontology, evolution and systematics of capybaras. In: Moreira JR, Barros Ferraz, KMPMB, Herrera EA, Macdonald DW (eds) Capybara. Biology, Use and Conservation of an Exceptional Neotropical Species. Springer, USA, pp 39–59Google Scholar
  72. Vucetich MG, Deschamps CM, Pérez ME (2015b) The first capybaras (Rodentia, Caviidae, Hydrochoerinae) involved in the Great American Biotic Interchange. Ameghiniana 52:324–333Google Scholar
  73. Vucetich MG, Deschamps CM, Pérez ME, Montalvo CI (2014) The taxonomic status of the Pliocene capybaras (Rodentia) Phugatherium Ameghino and Chapalmatherium Ameghino. Ameghiniana 51:173–183Google Scholar
  74. Vucetich MG, Pérez ME (2011) The putative cardiomyines (Rodentia, Cavioidea) of the middle Miocene of Patagonia (Argentina) and the differentiation of the family Hydrochoeridae. J Vertebr Paleontol 31:1382–1386Google Scholar
  75. Webb SD (1991) Ecogeography and the Great American Biotic Interchange. Paleobiology 17: 266–280Google Scholar
  76. Webb SD (2006) The great American biotic interchange: patterns and processes. Ann Mo Bot Garden 93:245–257Google Scholar
  77. Weber M (1928) Die Säugetiere. Einführung in die Anatomie und Systematik der recenten und fossilen Mammalia. G. Fischer, Jena, pp XII + 1–866Google Scholar
  78. Wilf P, Cúneo R, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu Rev Earth Planet Sci 41(1):561–603CrossRefGoogle Scholar
  79. Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, third edition. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  80. Woodburne M (2010) The Great American Biotic Interchange: dispersals, tectonics, climate, sea level, and holding pens. J Mammal Evol 17:245–264CrossRefPubMedPubMedCentralGoogle Scholar
  81. Woods CA (1984) Hystricognath rodents. In: Anderson S, Jones JK Jr (eds) Orders and Families of Recent Mammals of the World. Wiley and Sons, New York, pp 389–446Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • María E. Pérez
    • 1
    • 2
  • María C. Vallejo-Pareja
    • 3
    • 4
  • Juan D. Carrillo
    • 5
  • Carlos Jaramillo
    • 3
  1. 1.CONICET, Museo Paleontológico Egidio FeruglioTrelewArgentina
  2. 2.Researcher Associate Field Museum of Natural HistoryChicagoUSA
  3. 3.Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
  4. 4.Department of Biological SciencesSam Houston State UniversityHuntsvilleUSA
  5. 5.Paläontologisches Institut und MuseumUniversity of ZurichZurichSwitzerland

Personalised recommendations