Advertisement

Journal of Mammalian Evolution

, Volume 24, Issue 3, pp 345–358 | Cite as

Phylogenetic Systematics of Peccaries (Tayassuidae: Artiodactyla) and a Classification of South American Tayassuids

  • Rodrigo Parisi DutraEmail author
  • Daniel de Melo Casali
  • Rafaela Velloso Missagia
  • Germán Mariano Gasparini
  • Fernando Araujo Perini
  • Mario Alberto Cozzuol
Original Paper

Abstract

Tayassuidae is a family of pig-like Artiodactyla restricted to the New World. Despite its rich fossil history, they have received less attention from a taxonomic and phylogenetic perspective when compared to the Old World pigs, Suidae. In this study, we performed a computer assisted phylogenetic analysis using morphological and molecular data including fossil and extant Tayassuidae, using parsimony and Bayesian approaches. We recovered the monophyly of the family Tayassuidae, confirming previous proposals, as well as the monophyly of the subfamilies Hesperhyinae and Tayassuinae, and the genus Platygonus, which we placed in a new taxon of tribe level. The three living peccaries and a number of fossil species belong to a new, tribe level, monophyletic group. The genus Catagonus comes out as paraphyletic, leading us to propose to restrict the generic name to the type species, C. metropolitanus, and a new taxonomic arrangement for the remaining species previously included in it, revalidating the genera Brasiliochoerus and Parachoerus, and describing a new genus, Protherohyus, gen. nov.

Keywords

Tayassuidae Phylogeny Catagonus Protherohyus gen. nov. Brasiliochoerus Parachoerus 

Notes

Acknowledgments

The authors thank to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CAPES and FAPEMIG for financial support; and the authorities of palaeontological collections for providing material for analysis. We also want to thank Barbara Rossi (UFMG) for the drawings of skulls and living taxa on the phylogeny.

Supplementary material

10914_2016_9347_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 11 kb)
10914_2016_9347_MOESM2_ESM.jpg (52 kb)
ESM 2 (JPEG 51 kb)
10914_2016_9347_MOESM3_ESM.txt (3 kb)
ESM 3 (TXT 2 kb)
10914_2016_9347_MOESM4_ESM.docx (19 kb)
ESM 4 (DOCX 18 kb)
10914_2016_9347_MOESM5_ESM.txt (0 kb)
ESM 5 (TXT 510 bytes)
10914_2016_9347_MOESM6_ESM.txt (1 kb)
ESM 6 (TXT 530 bytes)
10914_2016_9347_MOESM7_ESM.p (8.9 mb)
ESM 7 (P 9120 kb)
10914_2016_9347_MOESM8_ESM.p (8.9 mb)
ESM 8 (P 9120 kb)
10914_2016_9347_MOESM9_ESM.tnt (335 kb)
ESM 9 (TNT 334 kb)

References

  1. Ameghino F (1886) Contribución al conocimiento de los mamíferos fósiles de los terrenos terciarios antiguos del Paraná. Bol Acad Nac Cienc 9: 5–228Google Scholar
  2. Ameghino F (1904) Nuevas especies de mamíferos cretáceos y terciarios de la República Argentina. An Soc Cien Argent 58:1–188Google Scholar
  3. Ameghino F (1908) Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapalmalán. An Mus Nac Bs As 10(3):343–428Google Scholar
  4. Cione AL, Gasparini GM, Soibelzon E, Soibelzon LH, Tonni EP (2015) The Great American Biotic Interchange. A South American Perspective. Springer Brief Monographies in Earth System Sciences. Springer, Dordecht, 97 ppGoogle Scholar
  5. Dalquest WW, Mooser O (1980) Late Hemphillian mammals of the Ocote local fauna, Guanojuato, Mexico. Pearce-Sellards Series 32:1–25Google Scholar
  6. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8):772Google Scholar
  7. Depéret C (1892) Sur la faune d'oiseaux pliocènes du Roussillon. Comptes Rendus des Séances Hebdomadaires de l'Académie des Sciences (Paris) 114:690–692Google Scholar
  8. de Pinna, MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7(4):367–394CrossRefGoogle Scholar
  9. Frailey CD, Campbell KE Jr (2012) Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin. J Paleontol 86: 852–877Google Scholar
  10. Gasparini GM (2007) Sistemática, biogeografía, ecología y bioestratigrafía de los Tayassuidae (Mammalia, Artiodactyla) fósiles y actuales de América del Sur, con especial énfasis en las especies fósiles de la provincia de Buenos Aires. Ph.D. Thesis Universidad Nacional de La Plata, ArgentinaGoogle Scholar
  11. Gasparini, GM (2013) Records and stratigraphical ranges of South American Tayassuidae (Mammalia, Artiodactyla). J Mammal Evol 20(1): 57–68CrossRefGoogle Scholar
  12. Gasparini GM, Kerber L, Oliveira EV (2009) Catagonus stenocephalus (Lund in Reinhardt, 1880) (Mammalia, Tayassuidae) in the Touro Passo Formation (late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. Neues Jahrb Geol Paläontol 254(3): 261–273CrossRefGoogle Scholar
  13. Gasparini GM, Ortiz Jaureguizar E, Carlini AA (2006) Familia Tayassuidae. In: Bárquez RM, Díaz MM, Ojeda RA (eds) Los Mamíferos de Argentina: Sistemática distribución. Publicación Especial de la Sociedad Argentina para el Estudio de los Mamíferos (SAREM), pp 114–115Google Scholar
  14. Gasparini GM, Rodriguez SP, Soibelzon LH, Beilinson E, Soibelzon E, Missagia RV (2014) Tayassu pecari (Link, 1795) (Mammalia, Cetartiodactyla): comments on its South American fossil record, taxonomy and paleobiogeography. Hist Biol 26(6): 785–800CrossRefGoogle Scholar
  15. Gasparini GM, Ubilla M, Tonni EP (2013) The Chacoan peccary, Catagonus wagneri (Mammalia, Tayassuidae), in the late Pleistocene (northern Uruguay, South America): paleoecological and paleobiogeographic considerations. Hist Biol 25 (5–6): 679–690CrossRefGoogle Scholar
  16. Gazin CL (1938) Fossil peccary remains from the upper Pliocene of Idaho. J Wash Acad Sci 28(2):41–48Google Scholar
  17. Gervais P (1852) Zoologie et paleontologie françaises (animaux vertebres) ou nouvelles recherches sur les animaux vivants et ´ fossiles de la France. Arthus Bertrand, Paris. pp 271Google Scholar
  18. Gervais P (1867–1869) Zoologie et Paléontologie générales. – Nouvelles recherches sur les vertébrés vivants et fossiles (Première série). A. Bertrand, ParisGoogle Scholar
  19. Gidley JW (1904) New or little known mammals of Miocene of South Dakota; American Museum Expedition of 1903. Bull Am Mus Nat Hist 20: 241–268Google Scholar
  20. Gidley JW (1920) Pleistocene Peccaries from the Cumberland Cave Deposit. US Government Printing OfficeGoogle Scholar
  21. Goloboff PA (1993) Estimating character weights during tree search. Cladistics 9(1):83–91CrossRefGoogle Scholar
  22. Goloboff PA (2014) Extended implied weighting. Cladistics 30(3):260–272CrossRefGoogle Scholar
  23. Goloboff PA, Farris JS (2001) Methods for quick consensus estimate. Cladistics 17(1):S26-S34CrossRefGoogle Scholar
  24. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5):774–786CrossRefGoogle Scholar
  25. Gongora J, Biondo C, Cooper JD, Taber A, Keuroghlian A, Altricher M, Nascimento FFdo, Chong AY, Miyaki CY, Bodmer R, Mayor P, González S (2011) Revisiting the species status of Pecari maximus van Roosmalen et al., 2007 Mammalia) from the Brazilian Amazon. Bonn Zool Bull 60:95–101Google Scholar
  26. Gongora J, Moran C (2005) Nuclear and mitochondrial evolutionary analyses of collared, white-lipped, and Chacoan peccaries (Tayassuidae). Mol Phylogenet Evol 34:181–189CrossRefPubMedGoogle Scholar
  27. Gray JE (1821) On the natural arrangement of vertebrose animals. Lond Med Repository 15(1):296–306Google Scholar
  28. Groves C, Grubb P (2011). Ungulate Taxonomy. Johns Hopkins University Press, BaltimoreGoogle Scholar
  29. Grubb P (2005) Order Artiodactyla. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. The Johns Hopkins University Press, Baltimore, pp 637–722Google Scholar
  30. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  31. Harris, JM,  Liu, LP (2007) Superfamily Suoidea. The evolution of Artiodactyla. Baltimore, USA. The Johns Hopkins University Press. pp. 130–150Google Scholar
  32. Harrison LB, Larsson HCE (2015) Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst Biol 64(2): 307–324CrossRefPubMedGoogle Scholar
  33. Hay OP (1902) Bibliography and catalogue of the Fossil Vertebrata of North America. Bull US Geolo Survey 179: 1–868Google Scholar
  34. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755CrossRefPubMedGoogle Scholar
  35. Huelsenbeck JP, Ronquist, F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314Google Scholar
  36. Jaeckel OMJ (1911) Die Wirbeltiere. Eine Übersicht über die fossilen und lebenden Formen. Gebrüder Bornträger, BerlinCrossRefGoogle Scholar
  37. Kraglievich L, Rusconi C (1931) Restos de vertebrados vivientes y extinguidos hallados por los señores ER Wagner y hermano en túmulos precolombinos de Santiago del Estero. Physis 10(36):248–252Google Scholar
  38. Kück P, Meusemann K (2010) FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol 56(3):1115–1118CrossRefPubMedGoogle Scholar
  39. Le Conte JL (1848) On Platygonus compressus: a new fossil pachyderm. Mem Am Acad Arts Sci 3(8):257–274Google Scholar
  40. Leidy J (1850) Observations on two new genera of fossil Mammalia, Eucrotophus jacksoni, and Archaeotherium mortoni. Proc Acad Nat Sci Philadelphia 5:90–93Google Scholar
  41. Leidy J (1869) The extinct mammalian fauna from Dakota and Nebraska including an account of some allied forms from other localities. Proc Acad Nat Sci Philadelphia 7:385Google Scholar
  42. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50(6):913–925CrossRefPubMedGoogle Scholar
  43. Link DHF (1795) Beiträge zur Naturgeschichte. Rostock und Leipzig 2:1–126Google Scholar
  44. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th ed. Laurentii SalviiGoogle Scholar
  45. Liu L-P (2003) Chinese fossil Suoidea systematics, evolution, and paleoecology. Helsinki University Printing House, Helsinki, pp 144Google Scholar
  46. Lund PW (1838- 1841) Blik paa Brasiliens Dyreverden för Sidste Jordmvaelting. Tredie Afhandling: Fortsaettelse af Patterdryene, Lagoa SantaGoogle Scholar
  47. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at: http://www.mesquiteproject.org/mesquite/download/download.html.
  48. McKenna MC, Bell SK (1997) Classification of Mammals above the Species Level. Columbia University Press, New YorkGoogle Scholar
  49. Menégaz AN, Ortiz Jaureguizar E (1995) Los artiodáctilos. In: Alberdi MT, Leone G, Tonni EP (eds) Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años. Un ensayo de correlación con el Mediterráneo occidental. Monografías CSIC, MadridGoogle Scholar
  50. Mirande MJ (2009) Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics 25(6): 574–613CrossRefGoogle Scholar
  51. Nixon KC (1999–2002) WinClada ver. 1.0000. Published by the author, IthacaGoogle Scholar
  52. O’Leary MA (2010) An anatomical and phylogenetic study of the osteology of the petrosal of extant and extinct artiodactylans (Mammalia) and relatives. Bull Am Mus Nat Hist 335: 1–206CrossRefGoogle Scholar
  53. Orliac MJ (2013) The petrosal bone of extinct Suoidea (Mammalia, Artiodactyla). J Syst Palaeontol 11(8): 925–945CrossRefGoogle Scholar
  54. Orliac MJ, Antoine P-O, Ducrocq S (2010) Phylogenetic relationships of the family Suidae, new insights on the relationships among Suoidea. Zool Scripta 39: 315–330CrossRefGoogle Scholar
  55. Owen R (1838) Fossil Mammalia. In: Darwin CR (ed) Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitz Roy, RN., during the Years 1832 to 1836. Smith, Elder and Co., London, pp 1–40Google Scholar
  56. Palmer TS (1897) Notes on the nomenclature of four genera of tropical American mammals. Proc Biol Soc Wash 11:173–174Google Scholar
  57. Parisi Dutra R, Missagia RV, Perini FA, Cozzuol MA, Gasparini GM, Guedes PG, Salles LDO (2016) Fossil peccaries of late Pleistocene/Holocene (Cetartiodactyla, Tayassuidae) from underwater caves of Serra da Bodoquena (Mato Grosso do Sul State, Brazil). Hist Biol doi:  10.1080/08912963.2015.1125898 Google Scholar
  58. Paula Couto C de (1950) Memórias sobre a paleontologia brasileira. Instituto Nacional do Livro, Rio de JaneiroGoogle Scholar
  59. Paula Couto, C de (1981) On an extinct peccary from the Pleistocene of Minas Gerais. Iheringia Série Geologia, Porto Alegre 6:75–78Google Scholar
  60. Peterson OA (1905) New suilline remains from the Miocene of Nebraska. Mem Carnegie Mus 4:41–156Google Scholar
  61. Pickford M (2011) Small suoids from the Miocene of Europe and Asia. Estudios Geol 67(2): 541–578CrossRefGoogle Scholar
  62. Pickford M, Moya-Sola S (1994) Taucanamo (Suoidea, Tayassuidae) from the middle Miocène (MN04a) of Els Casots. CR Acad Sci Paris, Barcelona, Spain 319, série 11: 15Google Scholar
  63. Pol D, Escapa IH (2009) Unstable taxa in cladistic analysis: identification and the assessment of relevant characters. Cladistics 25(5):515–527CrossRefGoogle Scholar
  64. Prothero DR (2009) The early evolution of the north American peccaries (Artiodactyla: Tayassuidae). Mus North Ariz Bull 65:509–541Google Scholar
  65. Prothero DR (2015) Evolution of the early Miocene Hesperhine peccaries. New Mexico Mus Nat Hist Sci Bull 67: 235–256Google Scholar
  66. Prothero DR, Grenader J (2012) A new primitive species of the flat-headed peccary Platygonus (Tayassuidae, Artiodactyla, Mammalia) from the late Miocene of the High Plains. J Paleontol 86(06):1021–1031CrossRefGoogle Scholar
  67. Prothero DR, Pollen A (2013) New late Miocene peccaries from California and Nebraska. Kirtlandia 58: 42–43Google Scholar
  68. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1. 6.Google Scholar
  69. Reig OA (1952) Descripción previa de nuevos ungulados y marsupiales fósiles del Plioceno y del Eocuartario argentinos. Revista del Museo Municipal de Ciencias Naturales y Tradicional de Mar del Plata 1: 119–129Google Scholar
  70. Reinhardt J (1880) De I de brasilianske knoglehuler fundne Navlesvin Arter. Videnskabelige Meddlelser fra den Naturhistorike Forening I Kjoberhavn. CopenhagueGoogle Scholar
  71. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574CrossRefPubMedGoogle Scholar
  72. Ronquist F, Huelsenbeck J, Teslenko M (2011) Draft MrBayes version 3.2 manual: tutorials and model summaries. Distributed with the software from http://brahms.biology.rochester.edu/software.html.
  73. Rusconi C (1930) Las especies fósiles argentinas de pecarí es y sus relaciones con las del Brasil y Norteamérica. An Mus Nac Hist Nat Bernardino Rivadavia 36:121–241Google Scholar
  74. Rusconi C (1948) Restos de platigonos y malformaciones oseas procedentes de los túmulos indígenas de Santiago del Estero. Rev Mus Hist Nat Mendoza 2:231–239Google Scholar
  75. Spencer MR, Wilberg EW (2013) Efficacy or convenience? Model-based approaches to phylogeny estimation using morphological data. Cladistics 29(6):663–671CrossRefGoogle Scholar
  76. Stock C (1937) A peccary skull from the Barstow Miocene, California. Proc Natl Acad  Sci 23(7):398–404Google Scholar
  77. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  78. Van der Made J (1997) Systematics and stratigraphy of the genera Taucanamo and Schizochoerus and a classification of the Palaeochoeridae (Suoidea, Mammalia). Proc Kon Ned Akad Wet: 100:127–139Google Scholar
  79. Wagner PJ (2012) Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol Lett 8:143–146CrossRefPubMedGoogle Scholar
  80. Wetzel RM, Dubos RE, Martin RL, Myers P (1975) Catagonus, an “extinct” peccary, alive in Paraguay. Science 189(42):379–381Google Scholar
  81. White TE (1942) Additions to the fauna of the Florida phosphates. Proc New Engl ZooClub 21:87–91Google Scholar
  82. Woodburne MO (1969) A late Pleistocene occurrence of collared pecary, Dicotyles tajacu, in Guatemala. J Mammal 50: 121–125CrossRefGoogle Scholar
  83. Wright AM, Hillis DM (2014) Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data” PLoS ONE 9.10:e109210.Google Scholar
  84. Wright AM, Lloyd GT, Hillis DM (2015) Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst Biol doi:  10.1093/sysbio/syv122
  85. Wright DB (1989) Phylogenetic relationships of Catagonus wagneri: sister taxa from the Tertiary of North America. In: Eisenberg JF, Redford KH (eds) Advances in Neotropical Mammalogy. Sandhill Crane Press, Gainsville, pp 281–308Google Scholar
  86. Wright DB (1998) Tayassuidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary Mammals of North America. Volume 1. Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, New York, pp 389–400Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.PPG - Zoologia/Departamento de Zoologia - Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Zoologia - Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.CONICET, División Paleontología Vertebrados, Unidades de Investigación Anexo Museo de La Plata, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations