Journal of Mammalian Evolution

, Volume 24, Issue 3, pp 359–371 | Cite as

Fossil Giraffidae (Mammalia, Artiodactyla) from Lee Adoyta, Ledi-Geraru, and Late Pliocene Dietary Evolution in Giraffids from the Lower Awash Valley, Ethiopia

  • John Rowan
  • Ellis M. Locke
  • Joshua R. Robinson
  • Christopher J. Campisano
  • Jonathan G. Wynn
  • Kaye E. Reed
Original Paper


The giraffid fossils recovered from ~ 2.8–2.6 million year old (Ma) sediments from Lee Adoyta, Ledi-Geraru, Ethiopia, are described here. Sivatherium maurusium and Giraffa cf. G. gracilis are the two identified taxa, with the former being more abundant than the latter. We interpret this skew of relative abundance to be of paleoenvironmental significance, as Sivatherium is rare and Giraffa is common in the adjacent, but older sediments of the Hadar Formation at Hadar (~ 3.4 to 2.95 Ma), which was characterized by wooded and well-watered habitats through most of its sequence. Stable carbon isotope analyses show that Giraffa remained an obligate browser throughout the lower Awash Valley (LAV) sequence while Sivatherium underwent a dietary transition from a browser in the Hadar Formation to a grazer at Lee Adoyta. This dietary shift in Sivatherium reflects local environmental change through time in the LAV as open habitats spread during the late Pliocene. A compilation of isotopic data from other sites in eastern Africa shows that the LAV dietary shift in Sivatherium occurred roughly one million years earlier than in the Turkana Basin, Kenya, reflecting a spatiotemporally staggered expansion of C4 vegetation across eastern Africa.


Giraffidae Pliocene Isotopes Sivatherium Eastern Africa 



We thank the curators and staff of the Authority for Research and Conservation of Cultural Heritage at the Ethiopian National Museum in Addis Ababa, Ethiopia for access to fossil specimens in their care. We thank M. Ahamadin, A. Mohamed, and the Afar people for assisting with fieldwork. Thanks to N. Levin for compiling the paleosol data used here and to J. Norman for helping analyze samples at USF. Field and lab work in the Ledi-Geraru area was made possible by National Science Foundation (NSF BCS-1157351). This research was also made possible through the support of a grant from the John Templeton Foundation to the Institute of Human Origins at Arizona State University. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. J. Rowan was supported by National Science Foundation Graduate Research Fellowship. Thanks to J.R. Wible and two anonymous reviewers for their helpful comments and support.

Supplementary material

10914_2016_9343_MOESM1_ESM.xlsx (27 kb)
SI Table 1 . Giraffid δ13C isotope data used in Fig. 5. (XLSX 26 kb)


  1. Ambrose S, DeNiro M (1986) Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319:321–324CrossRefGoogle Scholar
  2. Arambourg C (1947) Contribution à l’étude géologique et paléontologique du basin du lac Rodolphe et de la basse vallée de l’Omo. In: Arambourg C, Jeannel RG (eds) Paléontologie. Mission Scientifique de l’Omo. I. Fasc. 3: Géologie-Anthropologie. Editions du Muséum, Paris, pp 231–562Google Scholar
  3. Aronson JL, Hailemichael M, Savin SM (2008) Hominid environments at Hadar from paleosol studies in a framework of Ethiopian climate change. J Hum Evol 55: 532–550CrossRefPubMedGoogle Scholar
  4. Barr WA (2015) Paleoenvironments of the Shungura Formation (Plio-Pleistocene: Ethiopia) based on ecomorphology of the bovid astragalus. J Hum Evol 88:97–107CrossRefPubMedGoogle Scholar
  5. Bedaso ZK, Wynn JG, Alemseged Z, Geraads D (2013) Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. J Hum Evol 64: 21–38CrossRefPubMedGoogle Scholar
  6. Bengtson P (1988) Open nomenclature. Palaeontology 31: 223–227Google Scholar
  7. Bibi F, Souron A, Bocherens H, Uno K, Boisserie JR (2013) Ecological change in the lower Omo Valley around 2.8 Ma. Biol Lett 9: 20120890CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bobe R, Behrensmeyer AK (2004) The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Paleogeogr Paleoclimatol Paleoecol 207:399–420CrossRefGoogle Scholar
  9. Bobe R, Eck GG (2001) Responses of African bovids to Pliocene climatic change. Paleobiology 27:1–47CrossRefGoogle Scholar
  10. Brisson MJ (1762) Regnum Animale in classes IX distributum, sive synopsis Methodica, 2nd ed. Haak, LeidenGoogle Scholar
  11. Campisano CJ, Feibel CS (2007) Connecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia. J Hum Evol 53:515–527CrossRefPubMedGoogle Scholar
  12. Cerling TE, Harris J (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363CrossRefPubMedGoogle Scholar
  13. Cerling TE, Bowman JR, O’Neil JR (1988) An isotopic study of a fluvial-lacustrine sequence: the Plio-Pleistocene Koobi fora sequence, East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 63:335–356CrossRefGoogle Scholar
  14. Cerling TE, Harris J, Passey BH (2003) Diets of east African Bovidae based on stable isotope analysis. J Mammal. 84:456–470CrossRefGoogle Scholar
  15. Cerling TE, Harris JM, Leakey MG (2005) Environmentally driven dietary adaptations in African mammals. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, Animals and Ecosystems. Springer, New York, pp 258–272CrossRefGoogle Scholar
  16. Cerling TE, Andanje SA, Blumenthal SA, Brown FH, Chritz KL, Harris JM, Hart J, Kirera F, Kaleme P, Leakey L, Leakey M, Levin N, Manthi F, Passey B, Uno KT (2015) Dietary changes of large hebrivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc Natl Acad Sci USA 112(37): 11467–11472Google Scholar
  17. Churcher CS (1978) Giraffidae. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, pp 509–535Google Scholar
  18. Ciofolo I, Le Pendu Y (2013) Giraffa camelopardalis. In: Kingdon J, Hoffman M (eds) Mammals of Africa, Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. Bloomsbury, London, pp 98–110Google Scholar
  19. deHeinzelin JJ, Clark JD, White TD, Hart W, Renne P, WoldeGabriel G, Beyene Y, Vrba E (1999) Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284:625–629CrossRefGoogle Scholar
  20. deMenocal PB (1995) Plio-Pleistocene African climate. Science 30:1009–1022Google Scholar
  21. deMenocal PB (2004) African climate change and faunal evolution during the Plio-Pleistocene. Earth Planet Sci Lett 220:3–24CrossRefGoogle Scholar
  22. Dietrich WO (1942) Altestquartäre Säugetiere aus der südlichen Serengeti, Deutsch-Ostafrika. Paleontographica A 94:43–133Google Scholar
  23. DiMaggio EN, Campisano CJ, Rowan J, Dupont-Nivet G, Deino AL, Bibi F, Lewis ME, Souron A, Werdelin L, Reed KE, Arrowsmith JR (2015) Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from afar, Ethiopia. Science 347:1355–1359CrossRefPubMedGoogle Scholar
  24. Falconer H, Cautley PT (1836) Sivatherium giganteum, a new fossil ruminant genus, from the valley of Murkunda, in the Sewalik branch of the subhimalayan mountains. Asiat Reschs 19:1–24Google Scholar
  25. Franz-Odendaal TA, Solounias N (2004) Comparative dietary evaluations of an extinct giraffid (Sivatherium hendeyi) (Mammalia, Giraffidae, Sivatheriinae) from Langebaanweg, South Africa (early Pliocene). Geodiversitas 26:675–685Google Scholar
  26. Franz-Odendaal TA, Lee-Thorp JA, Chinsamy A (2002) New evidence for the lack of C4 grassland expansions during the early Pliocene at Langebaanweg, South Africa. Paleobiology 28:378–388CrossRefGoogle Scholar
  27. Garrett ND, Fox DL, McNulty KP, Faith JT, Peppe DJ, Van Plantinga A, Tryon CA (2015) Stable isotope paleoecology of late Pleistocene middle stone age humans from the Lake Victoria Basin, Kenya. J Hum Evol 82:1–14CrossRefPubMedGoogle Scholar
  28. Geraads D (1996) Le Sivatherium (Giraffidae, Mammalia) du Pliocéne final d’Ahl al Oughlam (Casablanca, Moroc), et l’évolution du genre en Afrique. Palaontol Z 70:623–629CrossRefGoogle Scholar
  29. Geraads D, Reed K, Bobe R (2013) Pliocene Giraffidae (Mammalia) from the Hadar Formation of Hadar and Ledi-Geraru, lower Awash, Ethiopia. J Vertebr Paleontol 33:470–481CrossRefGoogle Scholar
  30. Gray JE (1821) On the natural arrangement of vertebrose animals. London Medical Repository 15:296–310Google Scholar
  31. Harris JM (1976a) Pleistocene Giraffidae (Mammalia, Artiodactyla) from East Rudolf, Kenya. Fossil Mammals Afr 4:283–332Google Scholar
  32. Harris JM (1976b) Pliocene Giraffoidea (Mammalia, Artiodactyla) from the Cape Province. Ann S Afr Mus 69:325–353Google Scholar
  33. Harris JM (1974) Orientation and variability in the ossicones of African Sivatheriinae (Mammalia; Giraffidae). Ann S Afr Mus 65:189–198Google Scholar
  34. Harris JM (1987) Fossil Giraffidae and Camelidae from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, A Pliocene Site in Northern Tanzania. Clarendon Press, Oxford, pp 358–377Google Scholar
  35. Harris JM (1991) Family Giraffidae. In: Harris JM (ed) Koobi Fora Research Project, 3: The Fossil Ungulates: Geology, Fossil Artiodactyls and Palaeoenvironments. Clarendon Press, Oxford, pp 93–138Google Scholar
  36. Harris JM, Solounias N, Geraads D (2010) Giraffoidea. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 797–812Google Scholar
  37. Hart JA (2013) Okapia johnstoni. In: Kingdon J, Hoffman M (eds) Mammals of Africa, Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. Bloomsbury, London, pp 110–115Google Scholar
  38. Heaton T (1999) Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for paleodiet studies. J Archaeol Sci 26:637–649CrossRefGoogle Scholar
  39. Kingston JD (2011) Stable isotopic analyses of Laetoli fossil herbivores. In: Harrison T (ed) Paleontology and Geology of Laetoli, Volume 1. Springer, Dordrecht, pp 293–328Google Scholar
  40. Kingston JD, Harrison T (2007) Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 243: 272–306CrossRefGoogle Scholar
  41. Kohn M (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc Natl Acad Sci USA 107:19691–19695CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee-Thorp JA (2002) Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry 44:435–446CrossRefGoogle Scholar
  43. Lee-Thorp JA, Sponheimer M (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol 22:208–216CrossRefGoogle Scholar
  44. Levin NE, Quade J, Simpson SW, Semaw S, Rogers M (2004) Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth Planet Sci Lett 219:93–110CrossRefGoogle Scholar
  45. Levin NE, Brown FH, Behrensmeyer AK, Bobe R, Cerling TE (2011) Paleosol carbonates from the Omo group: isotopic records of local and regional environmental change in East Africa. Palaeogeogr Palaeoclimatol Palaeoecol 207:75–89CrossRefGoogle Scholar
  46. Levin NE, Haile-Selassie Y, Frost SR, Saylor BZ (2015) Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc Natl Acad Sci USA 112:12304–12309CrossRefPubMedPubMedCentralGoogle Scholar
  47. McDougall I, Brown FH, Vasconcelos PM, Cohen BE, Thiede DS, Buchanan MJ (2012) New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo group, Omo-Turkana Basin, East Africa. J Geol Soc 169:213–226CrossRefGoogle Scholar
  48. Murie J (1871) On the systematic position of the Sivatherium giganteum of Falconer and Cautley. Geol Mag 8:438–448CrossRefGoogle Scholar
  49. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567CrossRefGoogle Scholar
  50. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336CrossRefGoogle Scholar
  51. Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M, Dearing MD, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J Archaeol Sci 32:1459–1470CrossRefGoogle Scholar
  52. Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM (2010) High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc Natl Acad Sci USA 107: 11245–11249CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pellew RA (1984) The feeding ecology of a selective browser, the giraffe (Giraffa camelopardalis tippelskirchi). J Zool 202:57–81CrossRefGoogle Scholar
  54. Phillips DL (2012) Converting isotopic values to diet composition: the use of mixing models. J Mammal 93:342–352CrossRefGoogle Scholar
  55. Pomel A (1892) Sur le Libytherium maurusium, grand ruminant du terrain pliocéne plaisancien de l’Algérie. C R Acad Sci 115:100–102Google Scholar
  56. Quade J, Levin N, Semaw S, Stout D, Renne P, Rogers M, Simpson S (2004) Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. Geol Soc Am Bull 116:1529–1544CrossRefGoogle Scholar
  57. Quade J, Levin NE, Simpson SW, Butler R, McIntosh WC, Semaw S, Kleinsasser L, Dupont-Nivet G, Renne P, Dunbar N (2008) The geology of Gona, afar, Ethiopia. Geol Soc Spec Pap 446:1–31Google Scholar
  58. Quinn RL, Lepre CJ, Wright JD, Feibel CS (2007) Paleogeographic variations in pedogenic carbonate δ13C values from Koobi fora, Kenya: implications for floral conditions of Plio-Pleistocene hominin environments. J Hum Evol 53:560–573CrossRefPubMedGoogle Scholar
  59. Reed KE (2008) Paleoecological ptaterns at the Hadar hominin site, Afar regional state, Ethiopia. J Hum Evol 54:743–768CrossRefPubMedGoogle Scholar
  60. Robinson C (2011) Giraffidae. In: Harrison T (ed) Paleontology and Geology of Laetoli, Volume 2. Springer, Dordrecht, pp 33–62Google Scholar
  61. Seeber PA, Ndlovu HT, Duncan P, Ganswindt A (2012) Grazing behaviour of the giraffe in Hwange National Park, Zimbabwe. Afr J Ecol 50:247–250CrossRefGoogle Scholar
  62. Sponheimer M, Lee-Thorp JA (1999) Alteration of enamel carbonate environments during fossilization. J Archaeol Sci 26:143–150CrossRefGoogle Scholar
  63. Tieszen LL, Senyimba MM, Imbaba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350CrossRefPubMedGoogle Scholar
  64. Tieszen LL, Boutton T, Tesdahl K, Slade N (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for the 13C analysis of diet. Oecologia 57:32–37CrossRefPubMedGoogle Scholar
  65. van der Merwe NJ (2013) Isotopic ecology of fossil Fauna from Olduvai Gorge at ca 1.8 Ma, compared with modern fauna. S Afr J Sci 109:1–14Google Scholar
  66. van der Merwe NJ, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18:249–259CrossRefGoogle Scholar
  67. Villmoare B, Kimbel WH, Seyoum C, Campisano CJ, DiMaggio EN, Rowan J, Braun DR, Arrowsmith JR, Reed KE (2015) Early Homo at 2.8 Ma from Ledi-Geraru, afar, Ethiopia. Science 347:1352–1355CrossRefPubMedGoogle Scholar
  68. Wang Y, Cerling T (1994) A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Paleogeogr Paleoclimatol Paleoecol. 107:281–289CrossRefGoogle Scholar
  69. Wesselman HB (1984) The Omo Micromammals: Systematics and Paleoecology of Early Man Sites from Ethiopia. Karger, BaselGoogle Scholar
  70. White TD, Ambrose SH, Suwa G, Su DF, DeGusta D, Bernor RL, Boisserie JR, Brunet M, Delson E, Frost S, Garcia N, Giaourtsakis IX, Haile-Selassie Y, Howell FC, Lehmann T, Likius A, Pehlevan C, Saegusa H, Semprebon G, Teaford M, Vrba E (2009) Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326:87–93PubMedGoogle Scholar
  71. Wynn JG (2004) Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols of the Turkana Basin, Kenya. Am J Phys Anthropol 123:106–118CrossRefPubMedGoogle Scholar
  72. Wynn JG, Alemseged Z, Bobe R, Geraads D, Reed D, Roman DC (2006) Geological and palaeontological context of a Pliocene juvenile hominin at Dikika, Ethiopia. Nature 443: 332–336CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • John Rowan
    • 1
  • Ellis M. Locke
    • 1
  • Joshua R. Robinson
    • 1
  • Christopher J. Campisano
    • 1
  • Jonathan G. Wynn
    • 2
  • Kaye E. Reed
    • 1
  1. 1.Institute of Human Origins, School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  2. 2.School of GeosciencesUniversity of South FloridaTampaUSA

Personalised recommendations