Skip to main content

Advertisement

Log in

First Approach to the Paleobiology of Extinct Prospaniomys (Rodentia, Hystricognathi, Octodontoidea) Through Head Muscle Reconstruction and the Study of Craniomandibular Shape Variation

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Prospaniomys is a basal octodontoid recorded in the early Miocene in Patagonia (Argentina; Colhuehuapian SALMA). Nearly complete cranial and mandibular remains known for this genus provide a unique opportunity to explore its paleobiology. For this, masticatory muscles were reconstructed and craniomandibular shape variation assessed. While such reconstruction indicates that most masticatory muscles would have presented moderate development, both the masseter lateralis and posterior muscles were poorly developed. In contrast, we found that the temporalis muscle was well developed, while conspicuous postorbital constriction, postorbital processes, and superior temporal lines revealed a substantial orbital portion of this muscle. According to geometric morphometric results, craniomandibular shape was interpreted as generalized. Features such as shortened palate, narrower bizygomatic width, orthodont incisors, enlarged incisive foramina, and a shallow jaw could be linked to epigean habits. The moderate development of auditory bullae in Prospaniomys suggests that it is unlikely that it may have lived in extreme arid environments. Additionally, based on its generalized dental morphology, an omnivorous or generalized herbivorous diet that may have included leaves, fruit, and potentially animal matter was inferred. By the early Miocene, Patagonia experienced the initial expansion stage of arid-adapted vegetation, with grasses present in low amounts and abundant forests. Generalized habits and soft and non-abrasive diet suggest that Prospaniomys was possibly associated with more closed environments. Morphology alone cannot be used as an environmental proxy, but it could undoubtedly contribute to the interpretations based on data provided by paleobotanical and geological frameworks in studies on the evolution of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez A (2012) Diversidad morfológica cráneo-mandibular de roedores caviomorfos en un contexto filogenético comparativo. Ph.D Dissertation. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, 233 pp

  • Álvarez A, Perez SI, Verzi DH (2011a) Ecological and phylogenetic influence on mandible shape variation of South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linn Soc 102:828–837

    Article  Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2011b) Early evolutionary differentiation of morphological variation in the mandible of South American caviomorph rodents (Rodentia, Caviomorpha). J Evol Biol 24:2687–2695

    Article  PubMed  Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2013) Ecological and phylogenetic dimensions of cranial shape diversification in South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linn Soc 110:898–913

    Article  Google Scholar 

  • Ameghino F (1887) Enumeración sistemática de las especies de mamíferos fósiles coleccionados por Carlos Ameghino en los terrenos eocenos de Patagonia austral y depositados en el Museo de La Plata. Bol Mus La Plata 1:1–26

    Google Scholar 

  • Ameghino F (1897) Mamíferos cretáceos de la Argentina. Segunda contribución al conocimiento de la fauna mastológica de las capas con restos de Pyrotherium. Boletín Instituto Geográfico Argentino 18:406–429

    Google Scholar 

  • Arnal M (2012) Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae. Ph.D Dissertation. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, 317 pp

  • Arnal M, Kramarz AG (2011) First complete skull of an octodontoid (Rodentia, Caviomorpha) from the Neogene of South America and its bearing in the early evolution of Caviomorpha. Geobios 44:235–444

    Article  Google Scholar 

  • Arnal M, Kramarz AG, Vucetich MG, Vieytes CE (2014) A new early Miocene octodontoid rodent (Hystricognathi, Caviomorpha) from Patagonia (Argentina) and a reassessment of the early evolution of Octodontoidea. J Vertebr Paleontol 34:397–406

    Article  Google Scholar 

  • Arnal M, Pérez ME (2013) A new acaremyid rodent (Hystricognathi, Octodontoidea) from the middle Miocene of Patagonia (South America) and considerations on the early evolution of Octodontoidea. Zootaxa 3616:119–134

    Article  PubMed  Google Scholar 

  • Arnal M, Vucetich MG (2015) Revision of the fossil rodent Acaremys Ameghino, 1887 (Hystricognathi, Octodontoidea, Acaremyidae) from the Miocene of Patagonia (Argentina) and the description of a new acaremyid. Hist Biol 27:42–59

    Article  Google Scholar 

  • Barreda V, Palazzesi L (2010) Vegetation during the Eocene–Miocene interval in central Patagonia: a context of mammal evolution. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 371–378

    Google Scholar 

  • Barreda V, Palazzesi L, Tellería MC, Katinas L, Crisci JV (2010) Fossil pollen indicates an explosive radiation of basal Asteracean lineages and allied families during Oligocene and Miocene times in the Southern Hemisphere. Rev Palaeobot Palyno 160:102–110

    Article  Google Scholar 

  • Becerra F, Echeverría AI, Vassallo AI, Casinos A (2011) Bite force and jaw biomechanics in the subterranean rodent Talas tuco-tuco (Ctenomys talarum) (Caviomorpha: Octodontoidea). Can J Zool 89:334–342

    Article  Google Scholar 

  • Becerra F, Echeverría AI, Casinos A, Vassallo AI (2014) Another one bites the dust: bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). J Exp Zool 321A:220232

    Article  Google Scholar 

  • Becerra F, Vassallo AI, Echeverría AI, Casinos A (2012) Scaling and adaptations of incisors and cheek teeth in caviomorph rodents (Rodentia, Hystricognathi) J Morphol 273:1150–1162

    Article  PubMed  Google Scholar 

  • Blanco RE, Rinderknecht A, Lecuona G (2012) The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae). Lethaia 45:157–163

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York

    Google Scholar 

  • Bryant HN, Seymour KL (1990) Observations and comments on the reliability of muscle reconstruction in fossil vertebrates. J Morphol 206:109–117

    Article  Google Scholar 

  • Candela MC, Picasso MBJ (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269:552–593

    Article  PubMed  Google Scholar 

  • Candela MC, Rasia LL, Pérez ME (2012) Paleobiology of Santacrucian caviomorph rodents: a morphofunctional approach. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, New York, pp 287–305

    Chapter  Google Scholar 

  • Christiansen P (2008) Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS ONE 3:e2807

    Article  PubMed Central  PubMed  Google Scholar 

  • Cox PG, Jeffery N (2011) Reviewing the morphology of the jaw-closing musculature in squirrels, rats and guinea pigs with contrast-enhanced microCT. Anat Rec 294:915–928

    Article  Google Scholar 

  • Cox PG, Kirkham J, Herrel A (2013) Masticatory biomechanics of the Laotian rock rat, Laonastes aenigmamus, and the function of the zygomaticomandibularis muscle. PeerJ 1:e160

    Article  PubMed Central  PubMed  Google Scholar 

  • Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N (2012) Functional evolution of the feeding system in rodents. PLoS ONE 7:e36299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox PG, Rinderknecht A, Blanco RE (2015) Predicting bite force and cranial biomechanics in the largest fossil rodent using finite element analysis. J Anat. doi: 10.1111/joa.12282

    PubMed  Google Scholar 

  • Croft DA, Niemi K, Franco A (2011) Incisor morphology reflects diet in caviomorph rodents. J Mammal 92:871–879

    Article  Google Scholar 

  • De Iullis G, Bargo MS, Vizcaíno SF (2000) Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. J Vertebr Paleontol 20:743–754

    Article  Google Scholar 

  • De Santis LJM, Moreira GJ (2000) El aparato masticador del género extinto Actenomys Burmeister, 1888 (Rodentia, Ctenomyidae): inferencias sobre su modo de vida. Estud Geol 56:63–72

    Article  Google Scholar 

  • Ebensperger LA, Sobrero R, Campos V, Giannoni SM (2008) Activity, range areas, and nesting patterns in the viscacha rat, Octomys mimax. J Arid Environm 72:1174–1183

    Article  Google Scholar 

  • Ebensperger LA, Taraborelli P, Giannoni SM, Hurtado MJ, León C, Bozinovic F (2006) Nest and space use in a highland population of the southern mountain cavy (Microcavia australis). J Mammal 87:834–840

    Article  Google Scholar 

  • Eisenberg JF, Redford KH (1999) Mammals of The Neotropics. Vol. 3: The Central Neotropics – Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago

    Google Scholar 

  • Emerson SB, Bramble DM (1993) Scaling, allometry, and skull design. In: Hanken J, Hall BK (eds) The Skull: Functional and Evolutionary Mechanisms. University of Chicago Press, Chicago, pp 384–421

    Google Scholar 

  • Fabre PH, Galewski T, Tilak MK, Douzery EJP (2013) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zool Scripta 42:117–134

    Article  Google Scholar 

  • Fernández ME, Vassallo AI, Zárate M (2000) Functional morphology and palaeobiology of the Pliocene rodent Actenomys (Caviomorpha: Octodontidae): the evolution to a subterranean mode of life. Biol J Linn Soc 71:71–90

    Article  Google Scholar 

  • Figueirido B, Soibelzon L (2010) Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia 43:209–222

    Article  Google Scholar 

  • Fleagle JG, Bown TM (1983) New primate fossils from late Oligocene (Colhuehuapian) localities of Chubut province, Argentina. Folia Primatol 41:240–266

  • Gorniak GC (1985) Trends in the actions of mammalian masticatory muscles. Am Zool 25:331–337

    Article  Google Scholar 

  • Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. J Morphol 273:1319–1337

    Article  PubMed  Google Scholar 

  • Heesey CP (2005) Function of the mammalian postorbital bar. J Morphol 264:363–380

    Article  Google Scholar 

  • Herrel A, Fabre A-C, Hugot J-P, Keovichit K, Adriaens D, Brabant L, Van Hoorebeke L, Cornette R (2012) Ontogeny of the cranial system in Laonastes aenigmamus. J Anat 221:128–137

    Article  PubMed Central  PubMed  Google Scholar 

  • Herring SW, Rafferty KL, Liu ZJ, Lemme M (2011) Mastication and the postorbital ligament: dynamic strain in soft tissues. Integr Comp Biol 51:297–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Hiiemae K (1967) Masticatory function in the mammals. J Dent Res 46:883–893

    Article  CAS  PubMed  Google Scholar 

  • Hiiemae K (1971) The structure and function of the jaw muscles in the rat (Rattus norvegicus L.). III. The mechanics of the muscles. Zool J Linn Soc 50:111–132

    Article  Google Scholar 

  • Hildebrand M (1985) Digging in quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 89–109

    Chapter  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingener D (1964) The comparative myology of four dipodoid rodents (genera Zapus, Napaeoaapus, Sicista, and Jaculus). Misc Publ Mus Zool Univ Michigan 124:5–100

  • Kramarz AG (2001a) Revision of the family Cephalomyidae (Rodentia, Caviomorpha) and new cephalomyids from the early Miocene of Patagonia. Palaeovertebrata 30:51–88

  • Kramarz AG (2001b) Registro de Eoviscaccia (Rodentia, Chinchillidae) en estratos colhuehuapenses de Patagonia, Argentina. Ameghiniana 38:237–242

    Google Scholar 

  • Lautenschlager S (2013) Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions. J Anat 222:260–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Lay DM (1993) Anatomy of the heteromyid ear. In: Genoways HH, Brown JH (eds) Biology of the Heteromyidae. Am Soc Mammal, Spec Publ 10:270–290

  • Lessa LG, Costa FN (2009) Food habits and seed dispersal by Thrichomys apereoides (Rodentia: Echimyidae) in a Brazilian cerrado reserve. Mastozool Neotrop 16:459–463

    Google Scholar 

  • Lessa EP, Vassallo AI, Verzi DH, Mora MS (2008) Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol J Linn Soc 95:267–283

    Article  Google Scholar 

  • Lev-Tov A, Tal M (1987) The organization and activity patterns of the anterior and posterior heads of the Guinea pig digastrics muscle. J Neurophysiol 58:496–509

    CAS  PubMed  Google Scholar 

  • Lister AM (2013) The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500:331–334

    Article  CAS  PubMed  Google Scholar 

  • Mares MA, Braun JK, Bárquez RM, Díaz MM (2000) Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina. Occas Pap Mus Texas Tech Univ 203:1–27

  • Marschallinger R, Hofmann P, Daxner-Höck G, Ketcham RA (2011) Solid modeling of fossil small mammal teeth. Comp & Geosci 37:1364–1371

    Article  Google Scholar 

  • Nowak RM (1991) Walker’s Mammals of the World, 5th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ojeda RA (2013) Diversity and conservation of Neotropical mammals. In: Levin SA (ed) Encyclopedia of Biodiversity, 2nd edn., Vol 2. Academic Press, Waltham, pp 582–594

    Chapter  Google Scholar 

  • Ojeda RA, Borghi CE, Diaz GB, Giannoni SM, Mares MA, Braun JK (1999) Evolutionary convergence of the highly adapted desert rodent Tympanoctomys barrerae (Octodontidae). J Arid Environm 41:443–452

    Article  Google Scholar 

  • Pérez ME (2010) A new rodent (Cavioidea, Hystricognathi) from the middle Miocene of Patagonia, mandibular homologies, and the origin of the crown group Cavioidea sensu stricto. J Vertebr Paleontol 30:1848–1859

    Article  Google Scholar 

  • Pérez ME, Vucetich MG (2011) A new extinct genus of Cavioidea (Rodentia, Hystricognathi) from the Miocene of Patagonia (Argentina) and the evolution of cavioid mandibular morphology. J Mammal Evol 18:163–183

    Article  Google Scholar 

  • Pérez ME, Vucetich MG (2012) A revision of the fossil genus Phanomys Ameghino, 1887 (Rodentia, Hystricogntahi, Cavioidea) from the early Miocene of Patagonia (Argentina) and the acquisition of euhypsodonty in Cavioidea sensu stricto. Paläontol Z 86:187–204

    Article  Google Scholar 

  • Prevosti FJ, Turazzini GF, Ercoli MD, Hingst-Zahr E (2012) Mandible shape in marsupial and placental carnivorous mammals: a morphological comparative study using geometric morphometrics. Zool J Linn Soc 164:836–855

    Article  Google Scholar 

  • Rohlf FJ (2010) TpsDig, version 2.12. Stony Brook, NY: State University of New York at Stony Brook. Available at: http://life.bio.sunysb.edu/morph/

  • Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Samuels JX (2009) Cranial morphology and dietary habits of rodents. Zool J Linn Soc 156:864–888

    Article  Google Scholar 

  • Satoh K (1997) Comparative functional morphology of mandibular forward movement during mastication of two murid rodents, Apodemus speciosus (Murinae) and Clethrionomys rufocanus (Arvicolinae). J Morphol 231:131–142

    Article  CAS  PubMed  Google Scholar 

  • Scapino RP (1976) Function of the digastrics muscle in carnivores. J Morphol 150:843–860

    Article  Google Scholar 

  • Scasso RA, Bellosi ES (2004) Cenozoic continental and marine trace fossils at the Bryn Gwyn paleontological park, Chubut. In: Scasso RA, Bellosi ES (eds) Bryn Gwyn Guidebook, First International Congress on Ichnology, Museo Paleontológico Egidio Feruglio, Trelew, Argentina, pp 19–23

    Google Scholar 

  • Sepkoski D (2009) The emergence of paleobiology. In: Sepkoski D, Ruse M (eds) The Paleobiological Revolution, Essays on the Growth of Modern Paleontology. Cambridge Univesity Press, New York, pp 15–42

    Chapter  Google Scholar 

  • Sobrero R, Campos VE, Giannoni SM, Ebensperger LA (2010) Octomys mimax (Rodentia: Octodontidae). Mammal Species 42:49–57

    Article  Google Scholar 

  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey AE, Patton JL, Cameron GN (eds) Life Underground, the Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 19–61

  • Traba J, Acebes P, Campos VE, Giannoni SM (2010) Habitat selection by two sympatric rodent species in the Monte desert, Argentina. First data for Eligmodontia moreni and Octomys mimax. J Arid Environm 74:179–185

    Article  Google Scholar 

  • Tullberg T (1899) Ueber das system der Nagethiere: eine phylogenetische Studie. Nova Acta Regiae Soc Sci Upsal 3:1–514

    Google Scholar 

  • Upham NS, Patterson B (2012) Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia, Hystricognathi). Mol Phylogenet Evol 63:417–429

    Article  PubMed  Google Scholar 

  • Verzi DH, Olivares AI, Morgan CC (2014) Phylogeny, evolutionary patterns and timescale of South American octodontoid rodents: The importance of recognizing morphological differentiation in the fossil record. Acta Paleontol Pol. doi 10.4202/app.2012.0135

    Google Scholar 

  • Vucetich MG, Kramarz GA (2003) New Miocene rodents from Patagonia (Argentina) and their bearing on the early radiation of the octodontoids (Hystricognathi). J Vertebr Paleontol 23:435–444

    Article  Google Scholar 

  • Vucetich MG, Kramarz AG, Candela AM (2010a) The Colhuehuapian rodents from Gran Barranca and other Patagonian localities: the state of the art. In: Madden R, Carlini A, Vucetich MG, Kay R (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic. Cambridge University Press, New York, pp 206–219

    Google Scholar 

  • Vucetich MG, Verzi DH (1996) A peculiar octodontoid (Rodentia, Caviomorpha) with terraced molars from the lower Miocene of Patagonia (Argentina). J Vertebr Paleontol 16:97–302

    Article  Google Scholar 

  • Vucetich MG, Vieytes EC, Pérez ME, Carlini AA (2010b). The rodents from La Cantera and the early evolution of caviomorph in South America. In: Madden R, Carlini A, Vucetich MG, Kay R (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic. Cambridge University Press, New York, pp 189–201

    Google Scholar 

  • Williams SH, Kay RF (2001) A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J Mammal Evol 8:207–229

    Article  Google Scholar 

  • Wood AE (1955) A revised classification of the rodents. J Mammal 36:165–187

    Article  Google Scholar 

  • Wood AE, White RR III (1950) The myology of the chinchilla. J Morphol 86:547–597

    Article  CAS  PubMed  Google Scholar 

  • Woods CA (1972) Comparative myology of jaw, hyoid and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198

    Google Scholar 

  • Woods CA, Howland EB (1979) Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. J Mammal 60:95–116

    Article  Google Scholar 

  • Woods CA, Kilpatrick CW (2005) Infraorder Hystricognathi Brandt, 1855. In Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 1538–1600

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric Morphometrics for Biologists: a Primer. Elsevier Academic Press, London

    Google Scholar 

Download references

Acknowledgments

We thank A. Kramarz (MACN), M. G. Vucetich (MLP), D. Verzi (MLP), an anonymous reviewer, and the Editor-in-Chief John R. Wible for their valuable comments on the original manuscript. We thank D. Flores and S. Lucero (MACN, Mammalogical Collection); A. Kramarz and S. Álvarez (MACN, Vertebrate Paleontological Collection); S. Bogan (Félix de Azara Foundation); D. Verzi and I. Olivares (MLP, Mammalogical Collection) for granting access to material under their care. We are grateful to D. Flores for granting access to myological material under his care. This work is a contribution to CONICET PIP 0270 and ANPCyT PICT-2012-1150 grants to D. H. Verzi, ANPCyT PICT-2013-2672 to A. Álvarez, ANPCyT PICT-2012-1483 and UNLP N11-674 to M. G. Vucetich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Álvarez.

Appendix 1

Appendix 1

Definition of landmarks used in this study (numbers as in Fig. 3). Lateral view of cranium: 1, anterior lower end of premaxillary bone (on sagittal plane); 2, anterior upper end of premaxillary bone (on sagittal plane); 3, anterior end of suture between nasal and premaxillary bones; 4, anterior end of nasal bone; 5, junction of sutures among premaxillary and frontal bones, and dorsal margin of cranium; 6, junction of sutures among premaxillary, maxillary, and frontal bones; 7, anterior end of masseteric fossa of rostrum; 8, antero-ventral border of incisor alveolus; 9, junction between maxillar-premaxillar suture and ventral margin of rostrum; 10, most anterior point of zygomatic arch; 11, junction between lacrimal and frontal bones on antero-dorsal margin of orbit; 12, junction of sutures among maxillary, lacrimal, and frontal bones; 13, junction between jugal and lacrimal bones on anterior margin of orbit; 14, dorsal junction between maxillary and jugal bones; 15, dorsal junction between jugal and squamosal bones; 16, ventral junction between maxillary and jugal bones; 17, posterior tip of zygomatic arch; 18, postero-dorsal end of cranial glenoid fossa; 19, junction of squamosal, frontal, and parietal bones; 20, junction between frontal-squamosal suture and dorsal margin of skull; 21, junction of squamosal, parietal, and occipital bones; 22, junction of squamosal, occipital, and tympanic bones; 23, most dorsal point of external auditory meatus; 24, anterior end of auditory bulla; 25, posterior end of auditory bulla; 26, tip of paraoccipital process; 27, most posterior point of skull. Ventral view of cranium: 1, lateral edge of upper incisor; 2, medial edge of upper incisor; 3, junction between maxillary-premaxillary suture and lateral margin of incisive foramen; 4 and 5, extremities of incisive foramen; 6, intersection between margins of rostrum and zygomatic arch; 7 and 8, maximum length of ventral root of zygomatic arch; 9, lateral junction between maxillary and jugal bones; 10, posterior tip of zygomatic arch; 11 and 12, anterior and posterior ends of glenoid fossa, at their mid-point; 13 and 14, anterior and posterior ends of tooth row; 15, junction between maxillary and palatine bones in sagittal plane; 16, posterior (midsagittal) tip of palate; 17, most ventral point of foramen magnum; 18 and 19, anterior and posterior ends of auditory bulla. Lateral view of mandible: 1, anterodorsal border of incisor alveolus; 2, extreme of diastema invagination; 3, anterior end of mandibular tooth row; 4, anterior end of base of coronoid process; 5, maximum curvature of incisura mandibulae; 6, anterior edge of condylar process; 7, posterior-most edge of postcondyloid process; 8, maximum curvature of curve between postcondyloid process and angular process; 9, dorsal-most point on ventral border of mandibular corpus; 10, posterior extremity of mandibular symphysis; 11, anteroventral border of incisor alveolus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, A., Arnal, M. First Approach to the Paleobiology of Extinct Prospaniomys (Rodentia, Hystricognathi, Octodontoidea) Through Head Muscle Reconstruction and the Study of Craniomandibular Shape Variation. J Mammal Evol 22, 519–533 (2015). https://doi.org/10.1007/s10914-015-9291-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9291-z

Keywords

Navigation