Advertisement

Journal of Mammalian Evolution

, Volume 22, Issue 2, pp 129–140 | Cite as

A New Carodnia Simpson, 1935 (Mammalia, Xenungulata) from the Early Eocene of Northwestern Peru and a Phylogeny of Xenungulates at Species Level

  • Pierre-Olivier AntoineEmail author
  • Guillaume Billet
  • Rodolfo Salas-Gismondi
  • Julia Tejada Lara
  • Patrice Baby
  • Stéphane Brusset
  • Nicolas Espurt
Original Paper

Abstract

In spite of a scarce fossil record and poor diversity, xenungulates cover a wide spatial range throughout South America: a new representative of Carodnia Simpson, 1935, attests to the northernmost occurrence of a carodniid xenungulate, ~4,500km away from previous occurrences (Saõ José de Itaboraí, Rio de Janeiro, Brazil; Chubut Province, Patagonia, Argentina) and very close to the Pacific Coast. A phylogenetic analysis of Xenungulata at the species level shows that Xenungulata and Carodniidae are monophyletic, while Etayoidae are potentially paraphyletic, at least with the selected taxonomic sample. Phylogenetic relationships among Xenungulata are [Notoetayoa gargantuai, Etayoa bacatensis [Carodnia sp. nov. [Carodnia feruglioi, C. cf. feruglioi, C. vieirai]]]. The new species is well differentiated from other xenungulates in having the m3 slightly smaller than m2 in terms of occlusal area and the entoconid and hypoconid almost at the same level on m3. It further differs from all other xenungulates but Etayoa bacatensis in possessing a transverse protolophid on m3. It is distinct from all other representatives of Carodnia in showing a precingulid strongly developed on m2-m3. Referral of the locality to the well-constrained early Eocene Mogollón Formation also confirms (i) the persistence of both carodniid and etayoid xenungulates well after the Paleocene-Eocene transition in South America and (ii) the absence of paleogeographic barrier for such large terrestrial mammals at the scale of South American landmass.

Keywords

Chacra-Salina group Mogollón formation Phylogenetic analysis Paleogeography South American ungulates Itaboraian-Riochican South American Land Mammal ages 

Notes

Acknowledgments

Walter Aguirre prepared the specimen for the Museo de Historia Natural de la Universidad Nacional Mayor San Marcos, in Lima. The manuscript highly benefited from discussion and debate with Maëva J. Orliac and Rodolphe Tabuce. Javier N. Gelfo, an anonymous reviewer, and John R. Wible provided very constructive remarks on earlier versions of the manuscript. The excavation was partly funded by the Institut des Sciences de l’Evolution, Montpellier. This is ISE-M Publication n° 2014–119 S.

Supplementary material

10914_2014_9278_MOESM1_ESM.doc (62 kb)
ESM 1 (DOC 62 kb)

References

  1. Ameghino F (1897) Mammifères crétacés de l’Argentine: Deuxième Contribution à la connaissance de la Faune Mammalogique des Couches à Pyrotherium. Bol Inst Geogr Argent 18:406–521Google Scholar
  2. Antoine PO (2002) Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae). Mém Mus Natl Hist Nat 188:1–359Google Scholar
  3. Antoine PO (2012) Cenozoic mammals from Amazonia: diversity, environment, and biogeography. J Vertebr Paleontol 32(Suppl to 3):57Google Scholar
  4. Antoine PO, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Duranthon F, Fanjat G, Rousse S, Salas-Gismondi R (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc Roy Soc B 279:1319–1326CrossRefGoogle Scholar
  5. Bayona G, Montenegro O, Cardona A, Jaramillo C, Lamus F, Morón S, Quiroz L, Ruiz MC, Valencia V, Parra M., Stockli D (2010) Estratigrafía, procedencia, subsidencia y exhumación de las unidades Paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geol Colomb 35:5–35Google Scholar
  6. Bergqvist LP (1996) Reassociação do pós-crânio às espécies de ungulados da bacia de S. J. de Itaboraí (Paleoceno), Estado do Rio de Janeiro, e filogenia dos “Condylarthra” e ungulados sul-americanos com base no pós-crânio. PhD Dissertation, Universidade Federal do Rio Grande do Sul, BrazilGoogle Scholar
  7. Bergqvist LP, Powell JE, Avilla LS (2004) A new xenungulate from the Río Loro Formation (Paleocene) from Tucumán province (Argentina). Ameghiniana Suppl 41:36RGoogle Scholar
  8. Bloch JI, Rincón AF, Head JJ, Herrera F, Jaramillo CA (2012) Early Eocene mammals from the hot tropics of northern South America. J Vertebr Paleontol 32(Suppl to 3):64Google Scholar
  9. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  10. Cifelli RL (1993) The phylogeny of the native South American ungulates. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Volume 2: Placentals. Springer Verlag, New York, pp 195–216CrossRefGoogle Scholar
  11. Clyde WC, Wilf P, Iglesias A, Slingerland RL, Barnum T, Bijl PK, Bralower TJ, Brinkhuis H, Comer EE, Huber BT, Ibañez-Mejia M, Jicha BR, Krause JM, Schueth JD, Singer BS, Raigemborn MS, Schmitz MD, Sluijs A, Zamaloa M del C (2014) New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: implications for K/Pg extinction recovery and land mammal age correlations. Geol Soc Am Bull 126:289–306Google Scholar
  12. Damuth J (1990) Problems in estimating body masses of archaic ungulates using dental measurements. In: Damuth J, MacFadden BJ (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 229–253Google Scholar
  13. Farris JS (1988) Hennig86 reference, version 1.5. Port Jefferson Station (software and manual)Google Scholar
  14. Ferretti MP, Debruyne R (2011) Anatomy and phylogenetic value of the mandibular and coronoid canals and their associated foramina in proboscideans (Mammalia). Zool J Linn Soc 161:391–413CrossRefGoogle Scholar
  15. Fildani A (2004) Analysis of two arc-associated basins and onset of their deep-water stages: Magallanes basin, Chile, and Talara Basin, Peru. PhD Dissertation, Stanford University, Palo Alto, CaliforniaGoogle Scholar
  16. Fildani A, Hessler AM, Graham SA (2008) Trench-forearc interactions reflected in the sedimentary fill of Talara basin, northwest Peru. Basin Research 20:305–331.CrossRefGoogle Scholar
  17. Gelfo JN (2010) The “condylarth” Didolodontidae from Gran Barranca: history of the bunodont South American mammals up to the Eocene–Oligocene transition. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca. Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 130–142Google Scholar
  18. Gelfo JN, López GM, Bond M (2008) A new Xenungulata (Mammalia) from the Paleocene of Patagonia, Argentina. J Paleontol 82:329–335CrossRefGoogle Scholar
  19. Gelfo JN, Goin FJ, Woodburne MO, Muizon C de (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52:251–269Google Scholar
  20. Higley D (2004) The Talara Basin province of northwestern Peru: Cretaceous-Tertiary total petroleum system, US Geol Surv Bull 2206-AGoogle Scholar
  21. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T,, Sarkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931CrossRefPubMedGoogle Scholar
  22. Iddings A, Olsson AA (1928) Geology of northwest Perú. Bull Am Assoc Petrol Geol 12:1–39Google Scholar
  23. Jaramillo CA (2012) Fossil vertebrates from Neotropical latitudes: a vast record waiting to be discovered. J Vertebr Paleontol 32(Supp to 3):116Google Scholar
  24. Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieux et évolution. Münch geowiss Abh 16:1–110Google Scholar
  25. Line SRP, Bergqvist LP (2005) Enamel structure of Paleocene mammals of the São José de Itaboraí basin, Brazil.‘Condylarthra’, Litopterna, Notoungulata, Xenungulata, and Astrapotheria. J Vertebr Paleontol 25:924–928CrossRefGoogle Scholar
  26. Louterbach M, Roddaz M, Bailleul J, Antoine PO, Adnet S, Kim JH, van Soelen E, Parra F, Gérard J, Calderon Y, Gagnaison C, Sinninghe Damsté JS, Baby P (2014) Evidences for a late Palaeocene marine incursion in southern Amazonia (Madre de Dios Sub-Andean Zone, Peru). Palaeogeogr Palaeoclimatol Palaeoecol. doi: 10.1016/j.palaeo.2014.09.027 Google Scholar
  27. Lundberg JG, Marshall LG, Guerrero J (1998) The stage of Neotropical fish diversification: a history of tropical South American rivers. In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds). Phylogeny and classification of neotropical fishes. Edipucrs, Porto Alegre, pp 13–48Google Scholar
  28. Luo ZX, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107CrossRefPubMedGoogle Scholar
  29. Morón S, Fox DL, Feinberg JM, Jaramillo C, Bayona G, Montes C, Bloch JI (2013) Climate change during the early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism. Palaeogeogr Palaeoclimatol Palaeoecol 388:115–127CrossRefGoogle Scholar
  30. Muizon C de, Marshall LG (1987) Le plus ancien Pantodonte (Mammalia), du Crétacé supérieur de Bolivie. CR Acad Sci Paris 304:205–208Google Scholar
  31. Muizon C de, Marshall LG (1992) Alcidedorbignya inopinata (Mammalia: Pantodonta) from the early Paleocene of Bolivia; phylogenetic and paleobiogeographic implications. J Paleontol 66:499–520Google Scholar
  32. Negri FR, Bocquentin Villanueva J, Ferigolo J, Antoine PO (2010) A review of Tertiary mammal faunas and birds from western Amazonia. In: Hoorn C, Wesselingh FP (eds). Amazonia, landscape and species evolution: A look into the past. Blackwell-Wiley, Oxford, pp 245–258Google Scholar
  33. O’Leary MA Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Zhe-Xi Luo, Jin Meng, Xijun Ni, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–667CrossRefPubMedGoogle Scholar
  34. Paula Couto C (1952) Fossil mammals from the beginning of the Cenozoic in Brazil: Condylathra, Litopterna, Xenungulata, and Astrapotheria. Bull Am Mus Nat Hist 99:355–394Google Scholar
  35. Petters V (1968) Stratigraphic Memorandum No. 13: The Basal Salina Formation. Unpubl report, International Petroleum Corporation of PeruGoogle Scholar
  36. Roddaz M, Hermoza W, Mora A, Baby P, Parra M, Christophoul F, Brusset S, Espurt N (2010) Cenozoic sedimentary evolution of the Amazonian foreland basin system, In: Hoorn C, Wesselingh FP (eds) Amazonia, Landscape and Species Evolution: A Look into the Past. Blackwell-Wiley, Oxford, pp 61–88Google Scholar
  37. Séranne M (1987) Evolution tectono-sédimentaire du Bassin de Talara (nord-ouest du Pérou). Bull Inst Fr Et And 16:103–125Google Scholar
  38. Shockey BJ, Anaya F (2004) Pyrotherium macfaddeni, sp. nov. (late Oligocene, Bolivia) and the pedal morphology of pyrotheres. J Vertebr Paleontol 24:481–488CrossRefGoogle Scholar
  39. Simpson GG (1935) Descriptions of the oldest known South American mammals, from the Rio Chico Formation. Am Mus Novitates 93:1–25Google Scholar
  40. Swofford DL (1998) PAUP, Phylogenetic Analysis Using Parsimony, version 4.0, Smithsonian Institution, Sinauer Associates, Sunderland, Massachussets (software)Google Scholar
  41. Tabuce R, Jaeger JJ, Marivaux L, Salem M, Bilal AA, Benammi M, Chaimanee Y, Coster P, Marandat B, Valentin X, Brunet M (2012) New stem elephant-shrews (Mammalia, Macroscelidea) from the Eocene of Dur At-Talah, Libya. Palaeontology 55:945–955CrossRefGoogle Scholar
  42. Tassy P, Shoshani J (1988) The Tethytheria: elephants and their relatives. In: Benton MJ (ed) The Phylogeny and Classification of Tetrapods. II. Mammals. Clarendon Press, Oxford, pp 283–315Google Scholar
  43. van der Geer A, Lyras G, de Vos J, Dermitzakis M (2010) Front Matter. In: van der Geer A, Lyras G, de Vos J, Dermitzakis M (eds) Evolution of Island Mammals: Adaptation and Extinction of Placental Mammals on Islands. Wiley-Blackwell, Oxford. doi: 10.1002/9781444323986.fmatter CrossRefGoogle Scholar
  44. Villarroel C (1987) Caracteristicas y afinidades de Etayoa n. gen., tipo de una nueva familia de xenungulata (Mammalia) del Paleoceno medio de Colombia. Com Paleontol Mus Montevideo 19:241–253Google Scholar
  45. Wilson LA, Sánchez-Villagra MR, Madden RH, Kay RF (2012) Testing a developmental model in the fossil record: molar proportions in South American ungulates. Paleobiology 38:308–321CrossRefGoogle Scholar
  46. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2014a) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mammal Evol 21:1–73CrossRefGoogle Scholar
  47. Woodburne MO, Goin FJ, Raigemborn MS, Heizler M, Gelfo JN, Oliveira EV (2014b) Revised timing of the South American early Paleogene land mammal ages. J S Am Earth Sci 54:109–119CrossRefGoogle Scholar
  48. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre-Olivier Antoine
    • 1
    Email author
  • Guillaume Billet
    • 2
  • Rodolfo Salas-Gismondi
    • 1
    • 3
  • Julia Tejada Lara
    • 3
    • 4
    • 5
  • Patrice Baby
    • 6
    • 7
  • Stéphane Brusset
    • 6
    • 7
  • Nicolas Espurt
    • 7
    • 8
  1. 1.Institut des Sciences de l’Évolution, CC064Université Montpellier 2-CNRS-IRDMontpellierFrance
  2. 2.Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 CNRS, MNHNUniv Paris 06 - Muséum national d’Histoire naturelleParisFrance
  3. 3.Departamento de Paleontología de VertebradosMuseo de Historia Natural-Universidad Nacional Mayor San MarcosLima 11Peru
  4. 4.Florida Museum of Natural History - University of FloridaGainesvilleUSA
  5. 5.Institut Français d’Etudes Andines, UMIFRE 17 MAEDI/CNRS USR 3337LimaPeru
  6. 6.Géosciences-Environnement ToulouseUniversité de Toulouse; UPS (SVT-OMP); LMTG; CNRS; IRDToulouseFrance
  7. 7.Convenio IRD-PeruPetroSan BorjaPeru
  8. 8.CEREGE, CNRS, IRD, UM34, Technopôle Environnement Arbois-MéditerranéeAix-Marseille UniversitéMarseilleFrance

Personalised recommendations