Journal of Mammalian Evolution

, Volume 22, Issue 2, pp 271–277 | Cite as

Hoplitomerycidae (Late Miocene, Italy), an Example of Giantism in Insular Ruminants

  • Paul Peter Anthony Mazza
  • Maria Adelaide Rossi
  • Silvano Agostini
Original Paper


The remains of the largest Hoplitomeryx known to date have been retrieved from the upper Miocene limestones of Scontrone (Abruzzo, central Italy). Hoplitomerycidae derived from small-sized Oligocene Tragulina ruminants. Therefore, this is the first giant insular ruminant ever described. Insular giantism has been notoriously exhibited by other taxa, such as rodents. It is suspected for the largest Cretan deer Candiacervus, if these cervids monophyletically are derived from Dama. This large Hoplitomeryx was a lightly built animal with long, slender limbs. This case shows not only that insular giantism can be attained also on large islands, but confirms that it can be promoted by competitive release and immigrant selection.


Insular colonization Insular giantism Hoplitomeryx Late Miocene Apulia Platform Italy 



We are greatful to two anonymous reviewers who substantially improved this article. The study was financed by MIUR (Ministry of Education, University and Research grants: PRIN 2009MSSS9L_002 - resp. P.P.A. Mazza) funds.


  1. Blondel C (1997) Les ruminants de Pech Desse et de Pech du Fraysse (Quercy; MP28); évolution des ruminants de l’Oligocène d’Europe. Geobios 30:575–591Google Scholar
  2. Bover P (2004) Noves aportacions al coneixement del gènere Myotragus Bate, 1909 (Artiodactyla, Caprinae) de les Illes Balears. Dissertation, University of Palma de MallorcaGoogle Scholar
  3. Bover P, Alcover JA (2005) A taxonomic approach to the insular caprines from the Gymnesic Islands (western Mediterranean Sea). In: Crégut E (ed) Les ongulés holarctiques du Pliocène et du Pléistocène, Quaternaire, hors-série 2. Actes Colloque international Avignon, 19–22 Septembre 2000, pp 213–220Google Scholar
  4. Bover P, Quintanab J, Alcover JA (2008) Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quaternary Internatl 182:135–144CrossRefGoogle Scholar
  5. Capasso Barbato L, Petronio C (1986) Cervus major n.sp. of Bate Cave (Rethymnon, Crete). Atti Accad Naz Lincei, Mem cl Sc Fis Mat e Nat Ser VIII 18:59–100Google Scholar
  6. Carlquist S (1965) Island life. Natural History Press, BostonGoogle Scholar
  7. Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18CrossRefGoogle Scholar
  8. Damuth J (1993) Cope’s rule, the island rule and the scaling of mammalian population densities. Nature 365:748–750CrossRefPubMedGoogle Scholar
  9. Darlington PJ (1957) Zoogeography: the Geographical Distribution of Animals. John Wiley, New YorkGoogle Scholar
  10. de Vos J (1979) The endemic Pleistocene deer of Crete. Proc K Ned Akad B Phys 82:59–90Google Scholar
  11. de Vos J (1984) The endemic Pleistocene deer of Crete. Verh K Ned Akad Wet Afd Natuurkd (Eerste Reeks) 31:1–100Google Scholar
  12. de Vos J (1996) Taxonomy, ancestry and speciation of the endemic Pleistocene deer of Crete compared with the taxonomy, ancestry and speciation of Darwin’s finches. In: Reese DS (ed) Pleistocene and Holocene Fauna of Crete and its First Settlers. Prehistoric Press, Madison, pp 111–124Google Scholar
  13. de Vos J (2000) Pleistocene deer fauna in Crete: its adaptive radiation and extinction. Tropics 10:125–134CrossRefGoogle Scholar
  14. de Vos J (2006) Notes about the parallels in evolution of the Pleistocene cervids from Greece (Crete, Kassos and Karpathos), Japan (the Ryukyu-islands) and Philippines (Masbate). Hell J Geosci 41:127–140Google Scholar
  15. Dermitzakis MD, de Vos J (1987) Faunal succession and the evolution of mammals in Crete during the Pleistocene. Neues Jahrb Geol Pal Abh 173 (3):377–408Google Scholar
  16. Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235CrossRefGoogle Scholar
  17. Gilbert JJ, Confer JL (1986) Gigantism and the potential for interference competition in the rotifer genus Asplanchna. Oecologia 70:549–554CrossRefGoogle Scholar
  18. Gould GC, MacFadden BJ (2004) Gigantism, dwarfism, and Cope’s Rule, ‘Nothing in evolution makes sense without a phylogeny.' Bull Am Mus Nat Hist 285:219–237Google Scholar
  19. Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228CrossRefPubMedGoogle Scholar
  20. Hernández Fernández M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302CrossRefPubMedGoogle Scholar
  21. Janis CM, Scott KM (1987) The origin of the higher ruminant families with special reference to the origin of Cervoidea and relationships within the Cervoidea. Am Mus Novitates 2893:1–5Google Scholar
  22. Leinders JJM (1983) Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano (Italy). Part.1: the cranial osteology of Hoplitomeryx gen. nov. and discussion on the classification of pecoran families. Scripta Geol 70:1–8Google Scholar
  23. Lomolino MV (1985) Body size of mammals on islands: the island rule re-examined. Am Naturalist 125:310–316CrossRefGoogle Scholar
  24. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699CrossRefGoogle Scholar
  25. Lyras GA, Dermitzakis MD, van der Geer AAE, van der Geer SB, de Vos J (2009) The origin of Homo floresiensis and its relation to evolutionary processes under isolation. Anthropol Sci 117:33–43CrossRefGoogle Scholar
  26. MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387CrossRefGoogle Scholar
  27. MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, PrincetonGoogle Scholar
  28. Mazza PPA (2013a) The systematic position of Hoplitomerycidae revisited. Geobios 46:33–42CrossRefGoogle Scholar
  29. Mazza PPA (2013b) Hoplitomericidae (Ruminantia, late Miocene, central-southeastern Italy): whom and where from? Geobios 46:511–520CrossRefGoogle Scholar
  30. Mazza P, Rustioni M (2008) Processes of island colonization by Oligo-Miocene land mammals in the central Mediterranean: new data from Scontrone (Abruzzo, Central Italy) and Gargano (Apulia, Southern Italy). Palaeogeogr Palaeocl Palaeoecol 267:208–215CrossRefGoogle Scholar
  31. Mazza P, Rustioni M (2011) Five new species of Hoplitomeryx from the Neogene of Abruzzo and Apulia (central and southern Italy) with revision of the genus and of Hoplitomeryx matthei Leinders, 1983. Zool J Linn Soc 163:1304–1333CrossRefGoogle Scholar
  32. Meijer HJM, van den Hoek Ostende LW, van den Bergh GD, de Vos JD (2010) The fellowship of the hobbit: the fauna surrounding Homo floresiensis. J Biogeogr 37:995–1006CrossRefGoogle Scholar
  33. Mertens R (1942) Lacerta goliath n. sp., eine ausgestorbene Rieseneidechse von den Kanaren. Senckenbergiana 25:330–339Google Scholar
  34. Métais G, Antoine P-O, Marivaux L, Ducrocq S, Welcomme J-L (2003) New artiodactyl ruminant mammal from the late Oligocene of Pakistan. Acta Palaeontol Pol 48:375–382Google Scholar
  35. Patacca E, Scandone P, Mazza P (2008) Oligocene migration path for Apulia macromammals: the Central-Adriatic bridge. Boll Soc Geol Ital 127:337–355Google Scholar
  36. Patacca E, Scandone P, Carnevale G (2013) The Miocene vertebrate-bearing deposits of Scontrone (Abruzzo, Central Italy): stratigraphy and paleoenvironment analysis. Geobios 46:5–23CrossRefGoogle Scholar
  37. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350CrossRefPubMedGoogle Scholar
  38. Raia P, Meiri S (2006) The island rule in large mammals: paleontology meets ecology. Evolution 60:1731–1742CrossRefPubMedGoogle Scholar
  39. Reumer JWF (2007) Habitat fragmentation and the extinction of mammoths (Mammuthus primigenius, Proboscidea, Mammalia): arguments for a causal relationship. In: Kahlke R-D, Maul LC, Mazza PP (eds) Late Neogene and Quaternary biodiversity and evolution: Regional developments and interregional correlations Proceedings of the 18th International Senckenberg Conference, VI International Palaeontological Colloquium in Weimar, Vol. I. Courier Forschungsinstitut Senckenberg 256, Frankfurt, pp 279–286Google Scholar
  40. Schmidt NM, Jensen PM (2003) Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv Ecol 7:6Google Scholar
  41. Scott KM (1990) Postcranial dimensions of ungulates as predictors of body mass. In: Damuth J, Macfadden BJ (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implication. Cambridge University Press, Cambridge, pp. 301–336Google Scholar
  42. Smith FA (1995) Scaling of digestive efficiency with body mass in Neotoma. Funct Ecol 9:299–305CrossRefGoogle Scholar
  43. Sondaar PY (1977) Insularity and its effects on mammal evolution. In: Hecht MK, Goody PC, Hecht BM (eds) Major Patterns of Vertebrate Evolution. Plenum Press, New York, pp 671–707CrossRefGoogle Scholar
  44. van der Geer AAE (1999) On the astragalus of the Miocene endemic deer Hoplitomeryx from the Gargano (Italy). In: Reumer J, de Vos J (eds) Elephants Have a Snorkel! Papers in Honour of P.Y. Sondaar. Natuurmuseum Rotterdam, Deinsea 7, Rotterdam, pp 325–336Google Scholar
  45. van der Geer AAE (2005a) Island ruminants and parallel evolution of functional structures. In: Crégut-Bonnoure E (ed) Les ongulés holarctiques du Pliocène et du Pléistocène. Maison de la Géologie, Paris, pp 231–240Google Scholar
  46. van der Geer AAE (2005b) The postcranial of the deer Hoplitomeryx (Mio-Pliocene; Italy): another example of adaptive radiation on Eastern Mediterranean Islands. Monogr Soc Hist Nat Balears 12:325–336Google Scholar
  47. van der Geer AAE (2008) The effect of insularity on the Eastern Mediterranean early cervoid Hoplitomeryx: the study of the forelimb. Quaternary Internatl 182:145–159CrossRefGoogle Scholar
  48. van der Geer A, Dermitzakis M, de Vos J (2006) Crete before the Cretans: the reign of dwarfs. Pharos 13:119–130Google Scholar
  49. van der Geer A, Lyras G, de Vos J, Drinia H (2013) Morphology of articular surfaces can solve a phylogenetic issue: one instead of two ancestors for Candiacervus (Mammalia: Cervoidea) (Abstract). Zitteliana B 31: 33–34Google Scholar
  50. van der Made J, Palombo MR (2006) Megaloceros sardus n.sp., a large deer from the Pleistocene of Sardinia. Hell J Geosci 41:163–176Google Scholar
  51. Van Valen L (1973) Pattern and the balance of nature. Evol Theor 1:31–49Google Scholar
  52. Vislobokova IA (2001) Evolution and Classification of Tragulina (Ruminantia, Artiodactyla). Paleontol Zh 35:69–145Google Scholar
  53. Vislobokova IA, Trofimov BA (2002) Archaeomeryx (Archaeomerycidae, Ruminantia): morphology, ecology, and role in the evolution of the Artiodactyla. Paleontol J 36, supplement 5:429–522Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Paul Peter Anthony Mazza
    • 1
  • Maria Adelaide Rossi
    • 2
  • Silvano Agostini
    • 2
  1. 1.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  2. 2.Geological and Paleontological Service, The Regional Board of the Ministry of Cultural Heritage and Environmental Conservation of AbruzzoChietiItaly

Personalised recommendations