Journal of Mammalian Evolution

, Volume 22, Issue 1, pp 17–43 | Cite as

Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and Revision of Gobiconodontidae

  • Alexey Lopatin
  • Alexander Averianov
Original Paper


There are two species of Gobiconodon in the Early Cretaceous Khoboor locality of Mongolia: G. borissiaki Trofimov, 1978, and G. hoburensis (Trofimov, 1978). The smaller G. hoburensis has i2 half the size of i1, double-rooted dp2, and two generations of molariforms (m1-5 and m1r-4r). In the larger G. borissiaki, i2 is about ¾ size of i1, dp2 is single-rooted, and there are three generations of molariforms (m1-5, m1r-5r, m1rr-2rr). In larger G. ostromi Jenkins and Schaff, 1988, there are three molariforms of the third generation (m1rr-3rr). The anterior lower dentition of Gobiconodon is interpreted as i1-3, c, and dp1-2. The replacement of dp1 by p1 is known only in G. hoburensis. The dp2 is not replaced and may be lost in some specimens (G. hoburensis, G. ostromi) with its alveolus plugged by bone. Gobiconodon includes five valid species: G. borissiaki, G. hoburensis, G. ostromi, G. hopsoni Rougier et al., 2001, and G. zofiae Li et al., 2001 (=G. luoianus Yuan et al., 2009, syn. nov.). The holotype upper maxilla of G. hopsoni is not diagnostic and a new diagnosis for this species is provided based on lower dentitions from the type locality. Repenomamus Li et al., 2001, and Meemannodon Meng et al., 2005, are the only other members of the Gobiconodontidae. The dental formula of Repenomamus is reinterpreted as I1-3, C, P1, M1-5/i1-2, c, p1-2, m1-5 and thus it differs from Gobiconodon by lack of i3 and P2. Meemannodon is different from Gobiconodon by lack of i3 (the upper dentition is unknown). The Early Cretaceous Jeholodens, Yanoconodon, and Liaoconodon are closer to the Gobiconodontidae than to the Amphilestidae by having only two premolars. Liaoconodon with modified anterior dentition is likely the closest relative to the Gobiconodontidae. The Gobiconodontidae is likely the sister taxon for the clade Amphilestidae + Trechnotheria.


Mammalia Trechnotheria Gobiconodon Mongolia Early Cretaceous 



This work was supported by the Russian Foundation for Basic Research (projects 13-04-01401 and 13-04-00525). We thank Guilermo Rougier (University of Louisville, Louisville, USA) and an anonymous reviewer for reading the manuscript and critical comments that improved our article.


  1. Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47:705-716Google Scholar
  2. Averianov AO, Lopatin AV (2008) “Protocone” in a pretribosphenic mammal and upper dentition of tinodontid “symmetrontans.” J Vertebr Paleontol 28:548-552CrossRefGoogle Scholar
  3. Averianov AO, Lopatin AV, Krasnolutskii SA (2008) An amphilestid grade eutriconodontan from the Middle Jurassic of Russia. Russ J Theriol 7: 1-4Google Scholar
  4. Averianov AO, Martin T, Lopatin AV (2013) A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100:311-326PubMedCrossRefGoogle Scholar
  5. Averianov AO, Skutschas PP, Lopatin AV, Leshchinskiy SV, Rezvyi AS, Fayngerts AV (2005) Early Cretaceous mammals from Bol’shoi Kemchug 3 locality in West Siberia, Russia. Russ J Theriol 4:1-12Google Scholar
  6. Beynon AD, Clayton CB, Ramirez Rozzi FV, Reid DJ (1998) Radiographic and histological methodologies in estimating the chronology of crown development in modern humans and great apes: a review, with some applications for studies on juvenile hominids. J Human Evol 35:351-370CrossRefGoogle Scholar
  7. Buchtová M, Stembírek J, Matalová E, Tucker AS (2012) Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 91:491-498PubMedCrossRefGoogle Scholar
  8. Butler PM, Sigogneau-Russell D, Ensom PC (2012) Possible persistence of the morganucodontans in the Lower Cretaceous Purbeck Limestone Group (Dorset, England) Cret Res 33:135-145Google Scholar
  9. Chow M-C, Rich THV (1984) A new triconodontan (Mammalia) from the Jurassic of China. J Vertebr Paleontol 3:226-231CrossRefGoogle Scholar
  10. Cifelli RL, Madsen SK (1998) Triconodont mammals from the medial Cretaceous of Utah. J Vertebr Paleontol 18:403-411CrossRefGoogle Scholar
  11. Cifelli RL, Madsen SK (1999) Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21:167-214Google Scholar
  12. Cifelli RL, Wible JR, Jenkins FA Jr (1998) Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J Vertebr Paleontol 18:237-241CrossRefGoogle Scholar
  13. Crompton AW (1974) The dentitions and relationships of the southern African Triassic mammals Erythrotherium parringtoni and Megazostrodon rudnerae. Bull Brit Mus (Nat Hist) Geol 24:397-437Google Scholar
  14. Crompton AW, Jenkins FA Jr (1967) American Jurassic symmetrodonts and Rhaetic “pantotheres.” Science 155:1006-1009PubMedCrossRefGoogle Scholar
  15. Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43:427-458PubMedCrossRefGoogle Scholar
  16. Crompton AW, Jenkins FA Jr (1973) Mammals from reptiles: a review of mammalian origins. Annu Rev Earth Planet Sci 1:131-155CrossRefGoogle Scholar
  17. Crompton AW, Jenkins FA Jr (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-Thirds of Mammalian History. University of California Press, Berkeley, pp 59-73Google Scholar
  18. Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals, Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer Verlag, New York, pp 30-44CrossRefGoogle Scholar
  19. Crompton AW, Sun A (1985) Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool J Linn Soc 85:99-119CrossRefGoogle Scholar
  20. Cuenca-Bescos G, Canudo JI (2003) A new gobiconodontid mammal from the Early Cretaceous of Spain and its palaeogeographic implications. Acta Palaeontol Pol 48:575–582Google Scholar
  21. Engelmann GF, Callison GL (1998) Mammalian faunas of the Morrison Formation. Modern Geol 23:343-379Google Scholar
  22. Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontology 22:135-166Google Scholar
  23. Gaetano LC, Rougier GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vertebr Paleontol 31:829-843CrossRefGoogle Scholar
  24. Gambaryan PP, Kielan-Jaworowska Z (1995) Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontol Pol 40:45-108Google Scholar
  25. Gao C-L, Wilson GP, Luo Z-X, Maga M, Meng Q, Wang X. (2010) A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc B 277:237-246PubMedCentralPubMedCrossRefGoogle Scholar
  26. Godefroit P, Guo D-Y (1999) A new amphilestid mammal from the Early Cretaceous of Inner Mongolia (P.R. China). Bull l’Inst R Sci Natur Belg 69B:7-16Google Scholar
  27. Gow CE (1986) A new skull of Megazostrodon (Mammalia, Triconodonta) from the Elliot Formation (Lower Jurassic) of Southern Africa. Palaeontol Afr 26:13-26Google Scholar
  28. Hopson JA, Crompton AW (1969) Origin of mammals. In: Dobzhansky T, Hecht MK, Steere VC (eds) Evolutionary Biology. Appleton-Century-Crofts, New York, pp 25-72Google Scholar
  29. Hopson JA, Kielan-Jaworowska Z, Allin EF (1989) The cryptic jugal of multituberculates. J Vertebr Paleontol 9:201-209CrossRefGoogle Scholar
  30. Hu Y (2006) Postcranial morphology of Repenomamus (Eutriconodonta, Mammalia): implications for the higher-level phylogeny of mammals. Dissertation, City University of New YorkGoogle Scholar
  31. Hu Y, Meng J, Wang Y, Li C (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433:149-152PubMedCrossRefGoogle Scholar
  32. Hu Y, Wang Y, Luo Z-X, Li C (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137-142PubMedCrossRefGoogle Scholar
  33. Järvinen E, Tummers M, Thesleff I (2009) The role of the dental lamina in mammalian tooth replacement. J Exp Zool 312B:281-291CrossRefGoogle Scholar
  34. Jenkins FA Jr, Schaff CR (1988) The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vertebr Paleontol 8:1-24CrossRefGoogle Scholar
  35. Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139:3487-3497PubMedCrossRefGoogle Scholar
  36. Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of mammalian skeleton. Nature 398:326-330PubMedCrossRefGoogle Scholar
  37. Ji Q, Luo Z-X, Yuan C-X, Tabrum AR (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311:1123-1127PubMedCrossRefGoogle Scholar
  38. Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278-281PubMedCrossRefGoogle Scholar
  39. Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43:413-438Google Scholar
  40. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New YorkGoogle Scholar
  41. Li C, Wang Y, Hu Y, Meng J (2003) A new species of Gobiconodon (Triconodonta, Mammalia) and its implication for the age of Jehol Biota. Chin Sci Bull 48:1129-1134Google Scholar
  42. Li J, Wang Y, Wang Y, Li C (2001) A new family of primitive mammals from the Mesozoic of western Liaoning, China. Chin Sci Bull 46:782-785CrossRefGoogle Scholar
  43. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Laurentii Salvii, StockholmGoogle Scholar
  44. Lopatin AV (2013) New finds of Early Cretaceous mammals in Mongolia. Dokl Biol Sci 449:103-105PubMedCrossRefGoogle Scholar
  45. Lopatin AV, Averianov AO (2006a) An aegialodontid upper molar and the evolution of mammal dentition. Science 313:1092PubMedCrossRefGoogle Scholar
  46. Lopatin AV, Averianov AO (2006b) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51:339-349Google Scholar
  47. Lopatin AV, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontid dentition. Acta Palaeontol Pol 52:441-446Google Scholar
  48. Lopatin AV, Averianov AO, Maschenko EN, Leshchinskiy SV (2010a) Early Cretaceous mammals of Western Siberia: 3. Zhangheotheriidae. Paleontol J 44:573-583CrossRefGoogle Scholar
  49. Lopatin AV, Maschenko EN, Averianov AO (2010b) A new genus of triconodont mammals from the Early Cretaceous of Western Siberia. Dokl Biol Sci 433:282-285PubMedCrossRefGoogle Scholar
  50. Luckett WP (1993) An ontogenetic assessment of dental homologies in therian mammals. In: Szalay FS, Novacek MJ and McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 182-204CrossRefGoogle Scholar
  51. Luo Z-X (2011) Developmental patterns in Mesozoic evolution of mammal ears. Annu Rev Ecol Evol Syst 42:355-380CrossRefGoogle Scholar
  52. Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103-107Google Scholar
  53. Luo Z-X, Chen P, Li G., Chen M (2007a) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288-293PubMedCrossRefGoogle Scholar
  54. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1-78Google Scholar
  55. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36:159-175CrossRefGoogle Scholar
  56. Luo Z-X, Ji Q, Yuan C-X (2007b) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:93-97PubMedCrossRefGoogle Scholar
  57. Martin T, Averianov AO (2007) A previously unrecognized group of Middle Jurassic triconodontan mammals from Central Asia. Naturwissenschaften 94:43-48PubMedCrossRefGoogle Scholar
  58. Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30:855-871CrossRefGoogle Scholar
  59. Maschenko EN, Voronkevich AV (2001) New data on the diversity of mammals from the Early Cretaceous localities Shestakovo (south-west of Western Siberia). In: Evolution of Life on the Earth. Materials of the Second International Symposium, November 12-15, 2001. Izdatel’stvo NTL, Tomsk, pp 448-450 [In Russian]Google Scholar
  60. Meng J, Hu Y, Wang Y, Li C (2003) The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear. Zool J Linn Soc 138:431–448CrossRefGoogle Scholar
  61. Meng J, Hu Y, Wang Y, Li C (2005) A new tricondont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vertebr PalAsiatica 43:1-10Google Scholar
  62. Meng J, Hu Y, Wang Y, Wang X, Li C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889-893PubMedCrossRefGoogle Scholar
  63. Meng J, Wang Y, Li C (2011) Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472:181-185PubMedCrossRefGoogle Scholar
  64. Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc, pp 29-63Google Scholar
  65. Minjin B, Chuluun M, Geisler JH (2003) A report of triconodont mammal jaw from Oosh, an Early Cretaceous locality in Mongolia. Publ Mongol Univ Sci Technol Inst Geol Ser Geol 9: 89-93Google Scholar
  66. Montellano M, Hopson JA, Clark JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vertebr Paleontol 28:1130-1143CrossRefGoogle Scholar
  67. Musser AM, Archer M (1998) New information about the skull and dentary of the Miocene platypus Obdurodon dicksoni, and a discussion of ornithorhynchid relationships. Phil Trans R Soc London B 353:1063-1079CrossRefGoogle Scholar
  68. Parrington FR (1971) On the Upper Triassic mammals. Phil Trans R Soc London B 261:231-272CrossRefGoogle Scholar
  69. Parrington FR (1973) The dentition of the earliest mammals. Zool J Linn Soc 52:85-95CrossRefGoogle Scholar
  70. Patterson B, Olson EC (1961) A triconodontid mammal from the Triassic of Yunnan. In: Vandebroek G (ed) Internationall Colloquium on the Evolution of Lower and Non-Specialized Mammals. Konink Vlaamse Acad Wetensch Letteren Schone Kunst Belg, pp 129-191Google Scholar
  71. Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta PF (2002) A Jurassic mammal from South America. Nature 416:165-168PubMedCrossRefGoogle Scholar
  72. Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98-102PubMedCrossRefGoogle Scholar
  73. Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 76:73-115CrossRefGoogle Scholar
  74. Rougier GW, Ji Q, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sinica 77:7-14CrossRefGoogle Scholar
  75. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566:1-54CrossRefGoogle Scholar
  76. Rougier GW, Novacek MJ, McKenna MC, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novitates 3348:1-30CrossRefGoogle Scholar
  77. Rougier GW, Wible JR, Beck RMD, Apesteguía S. (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Natl Acad Sci USA 109:20053-20058PubMedCentralPubMedCrossRefGoogle Scholar
  78. Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Novitates 3398:1-15CrossRefGoogle Scholar
  79. Rowe TB, Rich THV, Vickers-Rich P, Springer MS, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105:1238-1242PubMedCentralPubMedCrossRefGoogle Scholar
  80. Sigogneau-Russell D (2003) Diversity of triconodont mammals from the Early Cretaceous of North Africa - affinities of the amphilestids. Palaeovertebrata 32:27-55Google Scholar
  81. Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. British Museum (Natural History), LondonGoogle Scholar
  82. Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus Yale Univ 3:1-235Google Scholar
  83. Stock DW, Weiss KM, Zhao Z (1997) Patterning of the mammalian dentition in development and evolution. BioEssays 19:481-490PubMedCrossRefGoogle Scholar
  84. Sweetman SC (2006) A gobiconodontid (Mammalia, Eutriconodonta) from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern Britain. Palaeontology 49:889-897CrossRefGoogle Scholar
  85. Tang F, Luo Z-X, Zhou Z, You H, Georgi JA, Tang Z-L, Wang X-Z (2001) Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China. Cret Res 22:115-129CrossRefGoogle Scholar
  86. Trofimov BA (1978) The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Akad Nauk SSSR 243:213-216 [In Russian]Google Scholar
  87. Tsubamoto T, Rougier GW, Isaji S, Manabe M, Forasiepi AM (2004) New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontol Pol 49:329–346Google Scholar
  88. Wang Y, Hu Y, Li C (2006) Review of recent advances on study of Mesozoic mammals in China. Vertebr PalAsiatica 44:193-204Google Scholar
  89. Wang Y, Hu Y, Meng J, Li C (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and the origin of the mammalian middle ear. Science 294:357-361PubMedCrossRefGoogle Scholar
  90. Westergaard B (1983) A new detailed model for mammalian dentitional evolution. Z zool Syst Evolutionsforsch 21:68-87Google Scholar
  91. Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Internatl J Oral Sci 5:66-70Google Scholar
  92. Woodburne MO (2003) Monotremes as pretribosphenic mammals. J Mammal Evol 10:195-248CrossRefGoogle Scholar
  93. Yuan C, Xu L, Zhang X, Xi Y, Wu Y, Ji Q (2009) A new species of Gobiconodon (Mammalia) from Western Liaoning, China and its implication for the dental formula of Gobiconodon. Acta Geol Sinica 83:207-211CrossRefGoogle Scholar
  94. Yuan C-X, Ji Q, Meng Q-J, Tabrum AR, Luo Z-X (2013) Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science 341:779-783PubMedCrossRefGoogle Scholar
  95. Zhang F-K, Crompton AW, Luo Z-X, Schaff CR (1998) Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vertebr PalAsiatica 36:197-217Google Scholar
  96. Zheng X, Bi S, Wang X, Meng J (2013) A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500:199-202PubMedCrossRefGoogle Scholar
  97. Zhou C-F, Wu S, Martin T, Luo Z-X (2013) A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500:163-167PubMedCrossRefGoogle Scholar
  98. Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807-814PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, Saint Petersburg 199034, Russia and Department of Sedimentary Geology, Geological FacultySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations